复杂系统学习(八):基于代理的模型II——模型开发和应用

这篇博客探讨了复杂系统中的代理模型,以澳大利亚邮政包裹运送为例,引出旅行商问题。旅行商问题是一个NP-完备问题,寻找最短路径通常需要启发式算法。蚁群优化(ACO)作为一种自然启发式算法,被用于解决此类问题,包括物流路线优化。ACO模拟蚂蚁觅食行为,通过信息素更新来寻找网络中的最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 关于代理和复杂系统的工程视角

1.1 问题:包裹运送

1.2 流动推销员问题

1.3 蚁群优化(ACO)

1.3.1 蚁群优化算法


 

1. 关于代理和复杂系统的工程视角

ABMs的目标通常是为现实世界的复杂系统的工作方式提供解释性的见解;例如:

  • 在没有中央领导者的情况下,蚂蚁群是如何觅食的?
  • 一种传染病如何在人群中传播?
  • 代理人做出自利的决定会产生什么样的市场动态?

自然发生的复杂系统也为计算、工程和系统设计中的现实问题提出了新的、有潜在价值的解决方案;例如:

  • 优化算法
  • 负载平衡 
  • 交通管理
  • 计算机图形和游戏
  • 供应链和物流 
  • 机器人技术

1.1 问题:包裹运送

澳大利亚邮政是澳大利亚邮政服务的主要提供者,最近的趋势是,从交付信件到包裹的转变。  

  • 信件:固定的目的地和路线 
  • 小包:每天的目的地都不一样 

2015年圣诞节,2015年12月期间每天交付130万个包裹。每天都有不同的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值