多重背包

上一篇讲的完全背包是指在所有物品件数无限多的情况下选择最值,现在引申出多重背包问题,即各物品个数w[ i ]均有限且不一定相同,且每件物品有其价值v[ i ],求这类情况下的最值。


多重背包问题的特点是数据量大,若按照01背包的做法开dp[ m ] [ n ]的数组进行遍历必会超时,所以建立数组时开设dp[ maxn ](maxn为数据可能达到的最大值)。

初始化将数组dp[ ]全部设为0,将dp[ 0 ]设为1。利用双重循环 i  从1到n遍历w[ i ],内层循环 j 从v[ i ]开始往后遍历,只要dp[ j - v[ i ] ]值为真(即表示价值j-v[ i ]能够满足)且dp[ j ]值为假(表示价值 j 尚未被满足)则价值 j 是有可能达到的。为什么说有可能?是因为能否达到价值 j 也得看v[ i ]的数量是否达到上限。如何记录w[ i ]的数量呢?还是要开设一个专门记录个数的数组num[ maxn ],在第一层循环内将数组num[ ]初始化为0,一旦满足 dp[ j - v[ i ] ]&&!dp[ j ]&&num[ j - v[ i ] ]<w[ i ] 则说明价值 j 是可以满足的,则将dp[ j ]的值设为真,再将num[ j ]=num[ j - v[ i ] ]+1 表示价值 j 所对应的价值为v[ i ]的物品的使用数在价值为 j-v[ i ]的基础上加1,此步操作尤为关键!之后根据题意看求什么边操作即可。


特地强调!多重背包虽为背包问题的最后一篇,但其模板最好操作,几乎百套百中!

模板:

[cpp]  view plain  copy
  1. for(int i=1;i<=n;i++)  
  2.     {  
  3.         memset(num,0,sizeof(num));  
  4.         for(int j=v[i];j<=maxn;j++)  
  5.         {  
  6.             if(dp[j-v[i]&&!dp[j]&&num[j-v[i]]<w[i])   
  7.             {  
  8.                 .......           //具体操作因题而异  
  9.                 num[j]=num[j-v[i]]+1;  //求num[j]对应的使用数  
  10.             }  
  11.         }  
  12.     }  


典例:http://acm.hdu.edu.cn/showproblem.php?pid=2191

中文题,没有看不懂的。

思路分析:典型的多重背包问题,开设一维数组dp[],维数maxn便是最大价值量,之后按照上述思路双重循环便是,dp[maxn]所对应的便是所能买到的最大情况

[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <stdio.h>  
  3. #include <string.h>  
  4. #include <algorithm>  
  5. using namespace std;  
  6.   
  7. int main()  
  8. {  
  9.     int T,n,m;  
  10.     int v[105],w[105],num[105],dp[105];  
  11.     cin>>T;  
  12.     while(T--)  
  13.     {  
  14.         cin>>m>>n;  
  15.         for(int i=0;i<n;i++)  
  16.             cin>>v[i]>>w[i]>>num[i];  
  17.         memset(dp,0,sizeof(dp));  
  18.         for(int i=0;i<n;i++)  
  19.             for(int j=0;j<num[i];j++)  
  20.                 for(int k=m;k>=v[i];k--)  
  21.                     dp[k]=max(dp[k],dp[k-v[i]]+w[i]);  
  22.         cout<<dp[m]<<endl;  
  23.     }  
  24.     return 0;  
  25. }  


典例2:http://poj.org/problem?id=1742

题意:n种价值的硬币,每种都有其数量w[ i ],给一个最大价值量m求出不超过最大价值量的情况下能凑出多少种价值。

分析:这题直接按照思路模板套就行了,一套就中

[cpp]  view plain  copy
  1. #include <iostream>  
  2. #include <stdio.h>  
  3. #include <string.h>  
  4. using namespace std;  
  5.   
  6. int use[100001];  
  7. int n,m;  
  8. bool dp[100001];  
  9. int v[1001],num[1001];  
  10. int main()   
  11. {  
  12.     while (scanf("%d %d", &n, &m) != EOF)   
  13.     {  
  14.         if (n == 0 && m == 0) break;  
  15.         for (int i = 0; i < n; ++i)  
  16.             scanf("%d", a+i);  
  17.         for (int i = 0; i < n; ++i)   
  18.             scanf("%d", num+i);  
  19.         int res = 0;  
  20.         memset(dp,false,sizeof(dp));  
  21.         dp[0] = true;  
  22.         for (int i = 0; i < n; ++i)   
  23.         {  
  24.             memset(use,0,sizeof(use));  
  25.             for (int j = a[i]; j <= m; ++j)   
  26.             {  
  27.                 if (!dp[j] && dp[j-a[i]] && use[j-a[i]]<num[i])  
  28.                 {  
  29.                     dp[j] = true;  
  30.                     use[j] = use[j-a[i]] + 1;  
  31.                     ++res;  
  32.                 }  
  33.             }  
  34.         }  
  35.         printf("%d\n", res);  
  36.     }  
  37.  return 0;  
  38. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值