基于Tensor手动实现的网络(网络结构同上一篇)

# __author: Y
# date: 2019/12/11


# h = W_1x+b_1
# a = max(0, h)
# Yhat = W_2a+b_2

# - forward pass
# -loss
# -backward pass

import numpy as np
import torch
# N是有多少个训练数据 D_in是输入维度
N , D_in, H, D_out = 64, 1000, 100, 10
# 随机创建一些训练数据
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

w1 = torch.randn(D_in, H)
w2 = torch.randn(H, D_out)

learning_rate = 1e-6
for it in range(500):
    # Forward pass
    h = x.mm(w1)  # N*H
    h_relu = h.clamp(min=0)  # N*H
    y_pred = h_relu.mm(w2) # N*D_out

    # compute loss
    loss = (y_pred - y).pow(2).sum().item()
    print(it, loss)

    # Backward pass
    # compute the gradient
    grad_y_pred = 2.0 * (y_pred-y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h<0] = 0
    grad_w1 = x.t().mm(grad_h)

    # update weights of w1 and w2
    w1 -= learning_rate*grad_w1
    w2 -= learning_rate*grad_w2

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值