给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个(0, 10000)区间内的正整数N。
输出格式:
如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
输入样例1:6767输出样例1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174输入样例2:
2222输出样例2:
2222 - 2222 = 0000
这里的排序继续利用了1015德才论中使用过的快速排序函数,具体使用方式见1015。
需要注意的就是位数,不足4位的要补零。
#include<stdio.h>
#include<stdlib.h>
int cmpa(const void *a,const void *b)//减排序
{
return *(int *)b - *(int *)a;
}
int main()
{
int n,m,rnt;
int a[4];
scanf("%d",&n);
do
{
for(int i=0;i<4;i++)
{
a[i]=n%10;
n/=10;
}
qsort(a,4,sizeof(a[0]),cmpa);
n=a[0];
m=a[3];
for(int j=1;j<4;j++)
{
n*=10;
m*=10;
n+=a[j];
m+=a[3-j];
}
rnt=n-m;
if(rnt==0)
{
printf("%04d - %04d = %04d",n,m,rnt);
break;
}
else
{
printf("%04d - %04d = %04d\n",n,m,rnt);
}
n=rnt;
}while(rnt!=6174);
return 0;
}