PAT 乙级练习题1019. 数字黑洞 (20)

给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

现给定任意4位正整数,请编写程序演示到达黑洞的过程。

输入格式:

输入给出一个(0, 10000)区间内的正整数N。

输出格式:

如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。

输入样例1:
6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
2222
输出样例2:

2222 - 2222 = 0000

这里的排序继续利用了1015德才论中使用过的快速排序函数,具体使用方式见1015。

需要注意的就是位数,不足4位的要补零。

#include<stdio.h>
#include<stdlib.h>  
int cmpa(const void *a,const void *b)//减排序 
{
	return *(int *)b - *(int *)a;
}
int main()
{ 
	int n,m,rnt;
	int a[4];
	scanf("%d",&n);
	do
	{
	for(int i=0;i<4;i++)
	{
		a[i]=n%10;
		n/=10;
	}	
	qsort(a,4,sizeof(a[0]),cmpa);	
	n=a[0];
	m=a[3];
	for(int j=1;j<4;j++)
	{
		n*=10;
		m*=10;
		n+=a[j];
		m+=a[3-j];
	}
	rnt=n-m;
	if(rnt==0)
	{
		printf("%04d - %04d = %04d",n,m,rnt);
		break;
	}
	else
	{
		printf("%04d - %04d = %04d\n",n,m,rnt);
	}	
	n=rnt;
	}while(rnt!=6174);
	
	return 0;  
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值