RSE和RMSE

RSE是相对标准误差,用于评估样本估计值精度,公式为s/平均值*100%,RSE小表示精度高。RMSE是均方根误差,衡量观测值与预测值的误差,公式为误差平方和的平方根/n,RMSE小说明预测模型更精确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在统计学中,RSE和RMSE分别代表相对标准误差和均方根误差。

RSE(Relative Standard Error)是用于衡量样本估计值的精度的统计指标,它可表示为:

R S E = s y ˉ × 100 RSE = \frac{s}{\bar{y}} \times 100% RSE=yˉs×100

其中,s是样本观测值与平均值之间的标准偏差, y ˉ \bar{y} yˉ是样本观测值的平均值。RSE越小,说明样本估计值的精度越高。

RMSE(Root Mean Square Error)是衡量观测值与预测值之间误差的一个指标,它可表示为:

R M S E = ∑ i = 1 n ( y i − y i ^ ) 2 n RMSE = \sqrt{\frac{\sum_{i=1}^{n}(y_i-\hat{y_i})^2}{n}} RMSE=ni=1n(yiyi^)2

其中, y i y_i yi是第i个观测值, y i ^ \hat{y_i} yi^是对应的预测值,n是总观测数。RMSE越小,说明预测模型的精度越高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值