在统计学中,RSE和RMSE分别代表相对标准误差和均方根误差。
RSE(Relative Standard Error)是用于衡量样本估计值的精度的统计指标,它可表示为:
R S E = s y ˉ × 100 RSE = \frac{s}{\bar{y}} \times 100% RSE=yˉs×100
其中,s是样本观测值与平均值之间的标准偏差, y ˉ \bar{y} yˉ是样本观测值的平均值。RSE越小,说明样本估计值的精度越高。
RMSE(Root Mean Square Error)是衡量观测值与预测值之间误差的一个指标,它可表示为:
R M S E = ∑ i = 1 n ( y i − y i ^ ) 2 n RMSE = \sqrt{\frac{\sum_{i=1}^{n}(y_i-\hat{y_i})^2}{n}} RMSE=n∑i=1n(yi−yi^)2
其中, y i y_i yi是第i个观测值, y i ^ \hat{y_i} yi^是对应的预测值,n是总观测数。RMSE越小,说明预测模型的精度越高。