torch 如何在迭代训练中,只计算参数梯度,不更新参数。并且将参数的梯度保存到列表,这个列表的值不随着梯度清零而跟着变为零

本文介绍了如何在PyTorch中使用torch.autograd.backward()计算梯度时,通过设置requires_grad为False阻止参数更新,并通过grads_list保存计算出的梯度,以便在需要时保留梯度值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用 torch.autograd.backward() 计算梯度后,可以通过设置参数的 requires_grad 属性为 False 来阻止参数更新。同时,通过将计算出的梯度值放入一个列表中来保存,这个列表的值不会随着梯度清零而清零

在使用 torch.autograd.backward() 计算梯度后,可以通过设置参数的 requires_grad 属性为 False 来阻止参数更新。同时,通过将计算出的梯度值放入一个列表中来保存,这个列表的值不会随着梯度清零而清零。下面是一个示例代码:

import torch
# 定义网络和优化器
model = torch.nn.Linear(10, 1)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 定义保存梯度的列表
grads_list = []
# 迭代训练过程
for i in range(10):
    # 获取数据并前向计算
    inputs, labels = get_data()
    outputs = model(inputs)
    # 计算损失函数并进行反向传播计算梯度
    loss = compute_loss(outputs, labels)
    model.zero_grad()
    loss.backward(retain_graph=True)
    # 保存梯度并更新优化器状态
    grads_list.append([p.grad.detach().clone() for p in model.parameters()])
    optimizer.step()
    # 在某些情况下需要清空梯度,但不影响保存下来的梯度值
    for p in model.parameters():
        p.grad = None

在上述代码中,我们首先定义了一个保存梯度的列表 grads_list,然后在每次迭代中使用 loss.backward() 计算梯度,并将计算出的梯度值放入 grads_list 中。由于我们在更新参数之前将所有参数的 requires_grad 属性设置为 False,所以这些参数不会被优化器更新。最后,我们清空梯度以便进行下一轮迭代,并通过 p.grad = None 来清除计算图中的梯度信息,但不影响保存下来的梯度值。

PyTorch中确保权重梯度正确更新的一个关键因素是正确处理`grad_fn`属性和`requires_grad`标志。`grad_fn`属性用于跟踪变量是如何通过一系列操作被创建的,对于构建计算图至关重要。在训练二分类网络时,确保那些需要求导的变量的`requires_grad=True`是必须的,因为PyTorch会追踪这些变量的运算历史来计算梯度。 参考资源链接:[PyTorch学习笔记:解决grad_fn与权重梯度更新问题](https://wenku.csdn.net/doc/645cd61b95996c03ac3f86a1?spm=1055.2569.3001.10343) 在实际操作中,问题通常出现在处理模型输出时。例如,在使用`torch.max`和`squeeze`操作处理模型输出`train_pred`以匹配目标数据`target`时,可能会破坏`grad_fn`链,导致梯度无法正确反向传播到权重。为了避免这种情况,应直接使用模型的原始输出`model(data)`来计算损失,并执行反向传播。这样可以保持计算图的完整性,确保梯度正确地计算更新权重。 正确的代码实现应该是这样的: ```python for batch_idx, (data, target) in enumerate(train_loader): # Get inputs data = Variable(data, requires_grad=False) target = Variable(target, requires_grad=False) # Forward pass output = model(data) # Calculate loss loss = F.binary_cross_entropy(output, target) # Backward pass and optimize loss.backward() optimizer.step() # Clear gradients for next iteration optimizer.zero_grad() ``` 在这个过程中,`data`变量作为输入进入模型,其`requires_grad=False`,意味着我们需要追踪这个变量梯度。模型的输出`output`与目标`target`直接用于计算损失函数,这样可以保持梯度的连贯性。当调用`loss.backward()`时,梯度会沿着整个计算图反向传播,最终达到每个可学习的参数。随后,`optimizer.step()`会更新权重,而`optimizer.zero_grad()`用于清除之前的梯度信息,为下一次迭代做准备。 掌握这些概念和操作对于理解PyTorch中的反向传播机制和梯度更新流程至关重要。此外,如果需要深入学习更多关于PyTorch中的梯度计算和模型训练的知识,推荐阅读《PyTorch学习笔记:解决grad_fn与权重梯度更新问题》。这本书详细讲解了PyTorch中的`grad_fn`属性,以及如何在模型训练中正确处理梯度更新问题,是进阶学习的良好资源。 参考资源链接:[PyTorch学习笔记:解决grad_fn与权重梯度更新问题](https://wenku.csdn.net/doc/645cd61b95996c03ac3f86a1?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值