Leetcode 组合、组合总和、组合总和Ⅱ、组合总和Ⅲ(回溯算法)

这篇博客介绍了如何利用回溯法解决组合总和系列问题,包括基础的组合总和,以及组合总和II、III、IV的实现。通过Java代码展示了如何找出给定数组中所有可能的组合,使得组合元素之和等于目标值,同时处理了重复元素的情况。这些算法适用于寻找特定条件下的子集问题。
摘要由CSDN通过智能技术生成

组合、组合总和、组合总和Ⅱ、组合总和Ⅲ、组合总和Ⅳ

组合

在这里插入图片描述

class Solution {
    public List<List<Integer>> combine(int n, int k) {
        List<List<Integer>> res = new ArrayList<>();
        addToList(res, new ArrayList<>(), n, k, 1);
        return res;
    }

    public void addToList(List<List<Integer>> res, List<Integer> temp, int n, int k, int start){
        if(temp.size() == k){
            res.add(new ArrayList<>(temp));
            return;
        }
        for(int i = start; i <= n; i++){
            temp.add(i);
            addToList(res, temp, n, k, i + 1);
            temp.remove(temp.size() - 1);
        }
        return;
    }
}
组合总和

在这里插入图片描述

class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> res = new ArrayList<>();
        backTrack(res, new ArrayList<>(), candidates, target, 0);
        return res;
    }

    public void backTrack(List<List<Integer>> res, List<Integer> temp, int[] candidates, int target, int start){
        if(target < 0) return;
        if(target == 0){
            res.add(new ArrayList<>(temp));
            return;
        }
        for(int i = start; i < candidates.length; i++){
            if(target < 0) break;
            temp.add(candidates[i]);
            backTrack(res, temp, candidates, target - candidates[i], i);
            temp.remove(temp.size() - 1);
        }
    }
}
组合总和Ⅱ

在这里插入图片描述

class Solution {
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        List<List<Integer>> res = new ArrayList<>();
        Arrays.sort(candidates);
        backTrack(res, new ArrayList<>(), candidates, target, 0);
        // Set<List<Integer>> set = new HashSet<>(res);
        // return new ArrayList<>(set);
        // 用set慢 因为set底层是红黑树
        return res;
    }

    public void backTrack(List<List<Integer>> res, List<Integer> temp, int[] candidates, int target, int start){
        if(target < 0) return;
        if(target == 0){
            res.add(new ArrayList<>(temp));
            return;
        }
        for(int i = start; i < candidates.length; i++){
            if(target < 0) break;
            // 去重关键步骤 ↓
            if(i > start && candidates[i] == candidates[i - 1]) continue;
            temp.add(candidates[i]);
            backTrack(res, temp, candidates, target - candidates[i], i + 1);
            temp.remove(temp.size() - 1);
        }
    }
}
组合总和Ⅲ

在这里插入图片描述

class Solution {
    public List<List<Integer>> combinationSum3(int k, int n) {
        List<List<Integer>> res = new ArrayList<>();
        combine(res, new ArrayList<>(), k, n, 1);
        return res;
    }

    public void combine(List<List<Integer>> res, List<Integer> temp, int k, int n, int start){
        if(temp.size() > k || n < 0) return;
        if(n == 0 && temp.size() == k){
            res.add(new ArrayList<>(temp));
            return;
        }
        for(int i = start; i <= Math.min(n, 9); i++){
            temp.add(i);
            combine(res, temp, k, n - i, i + 1);
            temp.remove(temp.size() - 1);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值