基于扩展卡尔曼滤波的锂电池SOH及剩余寿命(RUL)预测程序;
一个入门级的例子,重点在于讲清楚预测流程
ID:34360672418709742
算法设计助力者
基于扩展卡尔曼滤波的锂电池SOH及剩余寿命(RUL)预测程序
作为电动车辆和可再生能源等领域的重要组成部分,锂电池的状态评估和剩余寿命预测一直是研究的热点。在锂电池的使用过程中,准确预测电池的剩余寿命对于电池管理系统的安全性和可靠性至关重要。
本文将重点介绍基于扩展卡尔曼滤波的锂电池SOH(State of Health)及剩余寿命预测程序。首先我们需要明确什么是SOH和RUL,SOH是评估电池健康程度的指标,而RUL则是预测电池剩余使用时间。通过准确预测SOH和RUL,我们可以实现对锂电池的精确管理和优化控制。
在介绍扩展卡尔曼滤波之前,我们先了解一下传统方法的局限性。传统的电池健康评估方法通常基于容量衰减模型,但这种方法无法考虑电池的非线性特性和系统误差。因此,传统方法在预测剩余寿命时存在较大的误差。而扩展卡尔曼滤波作为一种递归滤波方法,能够利用测量值和模型