题目描述 Description
13号又是星期五是一个不寻常的日子吗?
13号在星期五比在其他日少吗?为了回答这个问题,写一个程序来计算在n年里13
日落在星期一,星期二......星期日的次数.这个测试从1900年1月1日到
1900+n-1年12月31日.n是一个非负数且不大于400.
这里有一些你要知道的:
1900年1月1日是星期一. | |
4,6,11和9月有30天.其他月份除了2月有31天.闰年2月有29天,平年2月有28天. | |
年份可以被4整除的为闰年(1992=4*498 所以 1992年是闰年,但是1990年不是闰年) | |
以上规则不适合于世纪年.可以被400整除的世纪年为闰年,否则为平年.所以,1700,1800,1900和2100年是平年,而2000年是闰年. |
请不要预先算好数据!
输入描述 Input Description
一个整数n.
输出描述 Output Description
七个在一行且相分开的整数,它们代表13日是星期六,星期日,星期一.....星期五的次数.
样例输入 Sample Input
20
样例输出 Sample Output
36 33 34 33 35 35 34
数据范围及提示 Data Size & Hint
n是一个非负数且不大于400.
是一个叫基姆拉尔森计算公式:W = (d+2*m+3*(m+1)/5+(y)+(y)/4-(y)/100+(y)/400)%7; 在公式中d表示日期中的日数+1,m表示月份数,y表示年份。
注意:用该公式时,需要把一月和二月看成是上一年的十三月和十四月,公式中的d是日期加1.所以计算结果就是实际的星期,即是:“1”为星期一,“2”为星期二。。。。“0”为星期日。
还有另外一个公式:W = (d+2*m+3*(m+1)/5+y+y/4-y/100+y/400)%7 (其中y是四位数的,如2009。)
注意:该公式中同样要把1月和2月分别当成上一年的13月和14月处理。而且该公式的“0”为星期一,。。。。,“6”为星期日。
附上代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<climits>
#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<map>
#include<queue>
#include<stack>
using namespace std;
int main()
{
int n;
scanf("%d", &n);
int week[10] = {0};
for(int i = 1900; i < 1900+n; i++)
{
for(int j = 1; j < 13; j++)
{
int m, W;
if(j == 1 || j == 2)
{
m = j+12;
W = (14+2*m+3*(m+1)/5+(i-1)+(i-1)/4-(i-1)/100+(i-1)/400)%7; // 基姆拉尔森计算公式
}
else
{
m = j;
W = (14+2*m+3*(m+1)/5+(i)+(i)/4-(i)/100+(i)/400)%7; // 基姆拉尔森计算公式
}
week[W]++;
}
}
printf("%d %d %d %d %d %d %d\n", week[6], week[0], week[1], week[2], week[3], week[4], week[5]);
return 0;
}