CMIP6学习笔记(数据下载-网页单个下载)

数据下载网站:https://aims2.llnl.gov/search/cmip6(需科学上网)

选择Sign in/Log in注册或者登录即可。

个人学习笔记,如有错误或建议欢迎在评论区指出。

一、界面简介

目前最新的下载界面如下图所示,左侧可以筛选数据,右侧则会显示数据筛选的结果。

二、右侧数据筛选栏详解

这一章节会详细记录右侧数据筛选栏的每一项含义。

(一)Select a Project

这个菜单列出了可以下载的不同气候模型相关数据集,每个选项代表一个特定的项目或数据框架,这里默认就是CMIP6。

(二)Filter By Transfer Options

这个选项是用于筛选数据传输方式的过滤器。

Any是默认选择:显示所有数据文件,无论其支持的传输方式。适合普通用户,不需要对传输方式进行限制。

Only Globus Transferrable只显示支持通过Globus传输工具下载的数据。(Globus是一种高效、可靠的数据传输工具,适合处理大规模或高性能需求的传输任务。)

目前的学习为网页单个下载,默认选择Any。

(三)Filter with Facets

ESGF数据平台的筛选选项,用于更精确地过滤和选择所需数据集。

1.General

Activity ID(活动标识),表示数据所属的特定实验活动或计划,可以看到就是MIPs,根据研究目的选择不同的MIPs。

Data Node指存储数据的服务器节点,其实可以直接空着。

2.Identifiers

### Python 库用于处理 CMIP6 数据 对于处理气候模型互比较计划第六阶段 (CMIP6)数据,多个专门设计的 Python 库提供了强大的支持。这些工具不仅简化了对复杂气象数据集的操作流程,还增强了数据分析效率。 #### 1. Xarray Xarray 是一个非常流行的多维数组操作库,特别适合于标签化数据结构。它能够读取 NetCDF 文件并提供 pandas 风格的数据接口来访问和操作 CMIP6 数据[^1]。 ```python import xarray as xr ds = xr.open_dataset('path_to_cmip6_file.nc') print(ds) ``` #### 2. Iris Iris 提供了一套完整的功能集合,专为地球科学领域定制。该库可以轻松加载、分析以及可视化来自不同源的各种格式的气象资料,包括 CMIP6 格式的文件[^2]。 ```python from iris import load_cube cube = load_cube('cmip6_data_path.nc', 'variable_name') print(cube.summary()) ``` #### 3. CDOpy CDOpy 是 Climate Data Operators (CDO) 工具包的一个 Python 接口版本。通过这个接口可以直接调用命令行下的 cdo 命令来进行高效的气候变化研究工作流管理[^3]。 ```python from cdopy import Cdo cdo = Cdo() output = cdo.sinfo(input='input_file.nc') print(output) ``` #### 4. PyNio PyNio 支持多种二进制存储格式之间的转换,并且具有良好的性能表现,在处理大规模数值模拟输出方面表现出色。这对于需要频繁交换不同类型文件的研究人员来说是一个不错的选择[^4]。 ```python from Nio import open_file f = open_file("filename", "r") data = f.variables["varname"][:] print(data.shape) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值