CMIP6学习笔记(概述)

一、什么是CMIP

CMIP(耦合模式比较计划)是一个由全球气候研究计划(WCRP)协调的国际合作项目,旨在通过对多个气候模型(如GCMs)的标准化实验比较,评估和改进气候模式的性能,研究气候系统关键问题(如气候敏感性、云反馈等),并预测未来气候变化。它通过不同的阶段(如 CMIP5、CMIP6)来提高气候预测的准确性。CMIP 包括多个实验(如 historical、ssp245),用于研究过去、现在和未来的气候变化。数据集非常丰富,涵盖温度、降水、海冰、气溶胶等多个变量。

二、CMIP6的21个子模式

根据对2014年10月WGCM第18届会议上商定的10个CMIP6认可标准的评估,CMIP小组和WGCM联合主席现在已经批准了21个模型相互比较项目(Model Intercomparison Projects ,MIPs)。CMIP6的设计将在地球科学模型开发特刊中进行描述,并提交一份概述论文和2016年3月底前设想的CMIP6批准的MIP贡献。本期特刊中对实验和强迫数据集的描述将详细定义CMIP6。关于CMIP6的更新信息也可以在http://www.wcrp-climate.org/index.php/wgcm-cmip/about-cmip.的CMIP面板网站上找到(以上来自于Overview CMIP6‐Endorsed MIPs中的说明)。

这些不同的子模式是为了探讨不同气候和地球系统研究问题而设计的独立模块,每个子模式聚焦于特定领域的研究需求。

Short name 
of MIP
Long name of MIP 中文
1 AerChemMIP Aerosols and Chemistry Model
 Intercomparison Project
气溶胶与化学模式比较项目
2 C4MIP Coupled Climate Carbon Cycle Model Intercomparison Project 耦合气候-碳循环模式比较项目
3 CFMIP Cloud Feedback Model
Intercomparison Project
云反馈模式比较项目
4 DAMIP Detection andAttribution Model Intercomparison Project 检测与归因模式比较项目
5 DCPP Decadal Climate Prediction
Project
年代际气候预测项目
6 FAFMIP Flux-Anomaly-Forced Model Intercomparison Project 强迫异常流模式比较项目
7 GeoMIP Geoengineering Model
Intercomparison Project
地球工程模式比较项目
8 GMMIP Global Monsoons Model Intercomparison Project 全球季风模式比较项目
9 HighResMIP High Resolution Model
IntercomparisonProject
高分辨率模式比较项目
10
### Python 库用于处理 CMIP6 数据 对于处理气候模型互比较计划第六阶段 (CMIP6) 的数据,多个专门设计的 Python 库提供了强大的支持。这些工具不仅简化了对复杂气象数据集的操作流程,还增强了数据分析效率。 #### 1. Xarray Xarray 是一个非常流行的多维数组操作库,特别适合于标签化数据结构。它能够读取 NetCDF 文件并提供 pandas 风格的数据接口来访问和操作 CMIP6 数据[^1]。 ```python import xarray as xr ds = xr.open_dataset('path_to_cmip6_file.nc') print(ds) ``` #### 2. Iris Iris 提供了一套完整的功能集合,专为地球科学领域定制。该库可以轻松加载、分析以及可视化来自不同源的各种格式的气象资料,包括 CMIP6 格式的文件[^2]。 ```python from iris import load_cube cube = load_cube('cmip6_data_path.nc', 'variable_name') print(cube.summary()) ``` #### 3. CDOpy CDOpy 是 Climate Data Operators (CDO) 工具包的一个 Python 接口版本。通过这个接口可以直接调用命令行下的 cdo 命令来进行高效的气候变化研究工作流管理[^3]。 ```python from cdopy import Cdo cdo = Cdo() output = cdo.sinfo(input='input_file.nc') print(output) ``` #### 4. PyNio PyNio 支持多种二进制存储格式之间的转换,并且具有良好的性能表现,在处理大规模数值模拟输出方面表现出色。这对于需要频繁交换不同类型文件的研究人员来说是一个不错的选择[^4]。 ```python from Nio import open_file f = open_file("filename", "r") data = f.variables["varname"][:] print(data.shape) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值