乘法逆元模板

逆元定义

一般用于求 a b   m o d ( p ) \dfrac{a}{b}\space mod (p) ba mod(p)
a ∗ x ≡ 1    ( m o d    p ) a*x ≡ 1 \;(mod \;p) ax1(modp) ,且 a与 p互质,那么我们就能定义: x 为 a 的逆元,记为 a − 1 a^{-1} a1 ,所以我们也可以称 x 为 a 的倒数( m o d    p mod \;p modp 意义如下)。

所以对于 a b      m o d    p \frac{a}{b}\ \; mod\;p ba modp
我们就可以求出 b 在 m o d    p mod\; p modp 意义下的逆元,然后乘上 a;再 m o d    p mod \; p modp,就是这个乘法逆元的值了。
用什么方法?显然是拓展欧拉定理

关于线性同余方程 a ∗ x ≡ c ( m o d b ) a*x \equiv c \pmod {b} axc(modb) 的c=1的情况。我们就可以转化为解 a ∗ x + b ∗ y = 1 a*x + b*y = 1 ax+by=1这个方程
优点是什么?就是当a和p互质时,p不是质数也可以使用

(什么?你不会拓展欧拉定理?费马小定理也可以!)

若p为素数,a为正整数,且a、p互质。 则有 a p − 1 ≡ 1 (   m o d   p ) a^{p-1} \equiv 1 (\bmod {p}) ap11(modp)
这个我们就可以发现它这个式子右边刚好为 1。
所以我们就可以放入原式,就可以得到:
a ∗ x ≡ 1 ( m o d p ) a∗x≡1(modp) ax1(modp)
a ∗ x ≡ a p − 1 ( m o d p ) a*x\equiv a^{p-1} \pmod p axap1(modp)
x ≡ a p − 2 ( m o d p ) x \equiv a^{p-2} \pmod p xap2(modp)
代码实现就是快速幂啦!

拓展欧拉定理

#include<bits/stdc++.h>
#define N 3000010
typedef long long ll;
using namespace std;
int inv[N],n,p;
inline int read(){
    int f=1,x=0;char ch;
    do{ch=getchar();if(ch=='-')f=-1;}while(ch<'0'||ch>'9');
    do{x=x*10+ch-'0';ch=getchar();}while(ch>='0'&&ch<='9');
    return f*x;
}
int main(){
    n=read();p=read();inv[1]=1;puts("1");
    for(int i=2;i<=n;i++){
        inv[i]=(ll)(p-p/i)*inv[p%i]%p;
        printf("%d\n",inv[i]);
    }
}

费马小定理

ll fpm(ll x, ll power, ll mod) {
    x %= mod;
    ll ans = 1;
    for (; power; power >>= 1, (x *= x) %= mod)
    	if(power & 1) (ans *= x) %= mod;
    return ans;
}
int main() {
	ll x = fpm(a, p - 2, p); //x为a在mod p意义下的逆元
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值