基于自适应计算机智能体的数字游戏对EFL
学生英语学习成果的影响
(Effects of an adaptive computer agentbased digital game on EFL students’ English learning outcomes)
Educational Technology Research and Development (2024)
一、概念解析
基于游戏的语言学习(Game-Based Language Learning,GBLL):是一种结合了游戏化元素和语言学习的教学方法。这种方法利用游戏的互动性和趣味性来提高学生学习语言的兴趣和动机,同时促进语言技能的发展。基于游戏的语言学习有利于学生的知识整合和更高层次的思维发展.
图1 教程阶段的界面
如图1所示,npc通过对话向玩家传授教科书中出现的介词。玩家学习两种类型的介词:时间介词(火魔法)和位置介词(水魔法)。当npc解释知识时,他们会展示带有学习数据库的图片或视频来帮助玩家理解。玩家学完所有内容后,可以随时重新复习。
计算机代理:被定义为多媒体环境中计算机化的类人角色,它们使用规则和技术驱动行为。作为一种学习支持技术,计算机代理已经被设计在不同的学习系统中,例如智能辅导和游戏应用,以支持不同年龄或应用领域的学生,他们通常扮演学习助手的角色,为学习者提供帮助和指导,或演示复杂的原理或过程。
图2“寻宝”任务界面
图2显示了寻宝游戏界面。玩家需要在计算机代理的帮助下克服障碍,找到目标NPC,计算机代理会用之前教程阶段出现的目标词汇提示玩家。玩家必须利用自己的先验知识来分析提示,找到正确的路线。它的目的是测试玩家是否能正确理解目标词的意思。在正确回答系统提出的问题后,玩家可以击败敌人并收集掉落的宝石。
决策树:
1.含义:决策树也被称为分类和回归树,是解决分类和回归问题的一种监督学习算法。决策树模型采用类似于流程图的树状结构来构建,通过一系列的“如果-那么-否则”(if-then-else)条件判断语句进行决策。
3.决策树的算法
信息增益:信息增益是决策树算法中用来选择特征的一个度量,它表示了特征对于分类结果的区分能力。具体来说,信息增益是指在知道某个特征值后,我们对样本的分类结果的不确定性减少的程度。通俗来说,信息增益就像是通过提问来缩小答案范围的过程。你问的问题越能缩小可能的答案,这个提问的信息增益就越大。
例如:在猜数字游戏中(1-100),你问我“这个数字大于50吗?”这个问题的信息增益很大,因为:如果我说“是”,那么你知道数字在51到100之间,范围缩小了一半。如果我说“不是”,那么你知道数字在1到50之间,同样范围缩小了一半。
信息熵:是一个度量信息不确定性的指标,它来源于信息论。在信息论中,信息熵用来描述一个随机变量的不确定性或者信息量的大小。信息熵越高,不确定性越大,信息量越大。
假设你每天早晨都会查看天气预报,以决定是否带伞出门。
确定性情况:如果天气预报总是100%准确,并且总是预报“今天会下雨”,那么你每天出门都会带伞,因为你知道一定会下雨。在这种情况下,信息熵很低,因为你没有任何不确定性,你知道会发生什么。
不确定性情况:如果天气预报说“今天有雨的概率是50%”,那么你可能会犹豫是否带伞。这种情况下,信息熵较高,因为你面临的不确定性增加了。你不知道会发生什么,所以需要准备应对两种情况(带伞或不带伞)。
更高不确定性:如果天气预报说“今天的天气可能是晴天、多云、阴天或雨天,每种天气的概率都是25%”,那么你面临的不确定性更大。在这种情况下,信息熵更高,因为你需要准备应对四种不同的天气情况。
二、摘要
研究目的:随着计算机技术和多媒体学习环境的发展,计算机代理被广泛应用于游戏系统中,以提供学习指导或协助。在传统的教学系统中,计算机代理被设计为执行单一角色,例如教师或学生。具有单一交互逻辑的计算机代理往往缺乏从各个角度了解学生状况和需求所需的功能,无法适应更好的学习支持。因此,本研究提出了一种自适应角色转换策略,允许计算机代理根据学生在数字游戏中的需求来调整自己的角色和功能,从而促进学生的学习成绩。同时开发了一种自适应计算机智能体数字游戏,以调查该模式对EFL学生英语词汇学习成就、动机、自我效能感和英语焦虑的影响。
研究对象:实验招募了四个班的56名中学生。实验组(n = 30),使用基于自适应计算机代理的数字游戏( ACA-DG),对照组(n = 26),使用传统的基于计算机代理的数字游戏(CCA-DG)。
实验结果:实验组学生的学习成绩和自我效能显著高于对照组学生。另一方面,实验组学生的英语焦虑明显低于对照组学生。在学习动机方面,两组学生之间没有显著差异。
三、研究问题
(1)使用自适应计算机智能体数字游戏(ACA-DG)学习英语的学生是否比使用传统计算机智能体数字游戏(CCA-DG)学习英语的学生有更高的英语学习成绩?
(2)使用ACA-DG学习的学生是否比使用CCA-DG学习的学生有更高的学习动机?
(3)使用ACA-DG学习的学生自我效能感是否高于使用CCA-DG学习的学生?
(4)使用ACA-DG学习的EFL学生的英语焦虑是否低于使用CCA-DG学习的学生?
(5)使用CCA-DG和ACA-DG学习的EFL学生是否有不同的行为特征?
四、研究设计
(一)实验工具
1.基于计算机智能体的自适应数字游戏系统:
自适应计算机代理模式:游戏中的计算机代理扮演三种角色:老师、同伴和学生,每种角色与玩家的互动方式不同。
老师角色:具备高意识水平,掌握所有任务细节,提供实时内容支持和指导。玩家使用老师代理时灵活性较低。
同伴角色:提供约80%的正确信息,情感特征不明显。给予玩家更多互动机会,玩家可选择是否寻求帮助。任务失败时提供审查建议。
学生角色:表现出不成熟或缺乏自信,通过提问确认玩家对任务的掌握。玩家表现良好时不干预,遇到困难时提供部分正确线索和审查建议。玩家从学生代理那里获得更多鼓励和互动。
自适应计算机代理数字游戏(ACA-DG):本研究开发了一个基于自适应计算机代理的数字游戏(ACA-DG),使用RPG Maker MV制作,包含挑战、战斗、寻宝等元素。游戏系统由学习模块、游戏模块、监控模块和角色转换模块组成。学习模块包含英语词汇库,NPC通过对话教学,提供复习机制。游戏模块介绍操作规则。监控模块分析学生的行为、情绪和认知状态。角色转换模块根据决策树模型调整计算机代理的角色,以适应玩家需求。实验组初始设置为同伴代理,任务结束后根据玩家表现调整代理风格。系统旨在通过自适应代理提高教学效果。
图3 ACA-DG的体系结构
决策树模型:本研究开发了一种面向专家决策的自适应角色转换策略,该策略通过构建决策树模型来确定游戏中计算机代理的风格,决策树模型如图4所示。计算机智能体根据玩家的行为特征,动态调整游戏过程中的交互风格和逻辑。
决策树中有6个分支,分别对应6种情况:
低错误率、低支持请求的玩家:转变为学生角色,因为他们能够自助学习并帮助他人。
低错误率、高支持请求、非任务互动的玩家:转变为学生角色,鼓励探索和互动。
低错误率、高支持请求、非任务互动的玩家:转变为同伴角色,增强社交行为。
高错误率、高支持请求、选择知识复习的玩家:转变为同伴角色,促进适应性调整。
高错误率、高支持请求、跳过知识复习的玩家:转变为教师角色,提供更多提示建议。
高错误率、低支持请求的玩家:转变为教师角色,提供学习支持和行为规范。
图4 决策树模型
2.测量工具
本研究中使用的工具包括学业成就、动机、自我效能感和英语焦虑的测试和问卷。前测和后测由两位经验丰富的英语教师设计,旨在评估英语学生对时间和地点介词的知识。
学习动机问卷是根据Wang和Chen(2010)开发的测量方法进行修改的。问卷采用李克特式5分评分方案(1 =强烈不同意;5 =非常同意),由6个项目组成。Cron-bach的alpha值为0.79。这个测量的一个例子是:“我更喜欢真正具有挑战性的课程材料,这样我就能学到新东西。”
自我效能感问卷是根据Pintrich et al.(1991)开发的测量方法修改而来。问卷采用李克特式5分制评分方案(1 =强烈不同意;5 =非常同意),由8个项目组成。总体Cronbach α为0.93。这个测量的一个例子是:“我相信我会在这门课上取得优异的成绩。”
英语焦虑问卷是在Horwitz等人(1986)开发的外语课堂焦虑(FLCA)量表基础上修改而成的。问卷采用李克特式5分制评分方案(1 =强烈不同意;5 =非常同意),由11个项目组成。总体Cronbach α为0.94。这个测量的一个例子是:“我不担心在英语课上犯错误。”
(二)实验对象和方法
本研究旨在通过基于自适应计算机代理的数字游戏提高英语学习成绩。我们在台湾北部的一所初中进行了准实验设计,以调查游戏的效果。参与者是来自4个班级的56名初中生。他们的平均年龄为14岁。ACA-DG组有30名学生,通过自适应计算机智能体数字游戏学习;CCA-DG组有26名学生,他们通过传统的基于智能体的计算机数字游戏学习(对照组没有监控模块和角色转换模块。由于传统教学系统中的大多数代理都是认知导师,因此对照组中默认的计算机代理是教师代理,以适应一般的教育游戏状态。与实验组相比,对照组使用的计算机代理不具备自适应角色转换的能力)。
(三)实验过程
实验流程如图5所示。
图5 实验流程
五、研究结果
(一)学习成绩分析
根据上图独立样本t检验分析显示,p=0.079>0.05,学习成绩前测不存在显著差异,表明两组学生在学习活动前学习水平相当。
组别 | N | M | SD | F |
实验组 | 30 | 62.0 | 1.70 | 230.0 |
对照组 | 26 | 51.4 | 1.99 |
表1 学习成绩后测协方差分析结果
本研究采用单向协方差分析(ANCOVA)评估两组学生的学业成绩,我们首先进行了同质性检验。确认回归齐性假设通过(F=1.09,p >0.05)。然后进行ANCOVA,以前测成绩为协变量,后测成绩为因变量,剔除问卷前评分的影响,采用协方差分析(ANCOVA)检验两组间的差异,如表1所示。结果显示(p < 0.05),两组间差异有统计学意义;也就是说:ACA-DG组学生的学业成绩明显高于CCA-DG组学生。基于自适应计算机代理的数字游戏提高了学生的学习成绩。
(二)学习动机分析
根据上图独立样本t检验分析显示,p=0.88>0.05,学习动机前测不存在显著差异,表明两组学生在参与学习活动前具有相似的学习动机。
组别 | N | M | SD | F |
实验组 | 30 | 3.84 | 0.08 | 0.95 |
对照组 | 26 | 3.82 | 0.08 |
表2 两组学生学习动机的协方差分析结果
为了评估采用ANCOVA是否合适,我们首先进行了同质性检验。确认回归齐性假设通过(p >0.05)。然后进行ANCOVA,以前测成绩为协变量,后测成绩为因变量,剔除问卷前评分的影响,采用协方差分析(ANCOVA)检验两组间的差异,如表2所示。结果显示(p >0.05),两组间差异没有统计学意义;也就是说:结果表明,使用ACA-DG的学生与使用CCA-DG的学生在使用基于计算机代理的数字游戏后具有相似的学习动机。
(三)自我效能感分析
根据上图独立样本t检验分析显示,p=0.12>0.05,自我效能感前测不存在显著差异,表明两组学生在参与学习活动前具有相似的自我效能感水平。
组别 | N | M | SD | p |
实验组 | 30 | 3.17 | 0.01 | <0.05 |
对照组 | 26 | 2.86 | 0.01 |
表3 两组学生自我效能感的协方差分析结果
为了评估采用ANCOVA是否合适,我们首先进行了同质性检验。确认回归齐性假设通过(F=0.33,p >0.05)。然后进行ANCOVA,以前测成绩为协变量,后测成绩为因变量,剔除问卷前评分的影响,采用协方差分析(ANCOVA)检验两组间的差异,如表3所示。结果显示(p < 0.05),两组间差异有统计学意义;也就是说:使用基于计算机代理的数字游戏后ACA-DG组学生的自我效能感显著高于CCA-DG组。
(四)学生英语焦虑分析
根据上图独立样本t检验分析显示,p=0.46>0.05,英语焦虑前测不存在显著差异,表明两组学生在参与学习活动前具有相似的英语焦虑水平。
组别 | N | M | SD | F |
实验组 | 30 | 2.98 | 0.01 | 357.7 |
对照组 | 29 | 3.24 | 0.05 |
表4 两组学英语焦虑的协方差分析结果
为了评估采用ANCOVA是否合适,我们首先进行了同质性检验。确认回归齐性假设通过(F=2.64,p >0.05)。然后进行ANCOVA,以前测成绩为协变量,后测成绩为因变量,剔除问卷前评分的影响,采用协方差分析(ANCOVA)检验两组间的差异,如表4所示。结果显示(p < 0.05),两组间差异有统计学意义;也就是说:使用基于自适应计算机代理的数字游戏( ACA-DG)学习的学生的英语焦虑明显低于使用CCA-DG学习的学生。
(五)学习行为特征分析
组别 | N | M | SD | p | |
非任务交互次数 | 实验组 | 30 | 59.16 | 4.59 | <0.05 |
对照组 | 29 | 52.75 | 4.41 | ||
求助行为特征 | 实验组 | 30 | 17.15 | 1.62 | <0.05 |
对照组 | 29 | 13.76 | 1.05 | ||
认知状态特征 | 实验组 | 30 | 24.31 | 4.69 | <0.05 |
对照组 | 29 | 34.88 | 5.29 | ||
知识复习 | 实验组 | 30 | 1.85 | 0.25 | |
对照组 | 29 | 1.76 | 0.22 |
表5 两组学生学习行为特征评分的独立t检验结果
本研究采用独立样本t检验比较实验组和对照组学习者的行为特征,如表5所示。
在认知状态方面,ACA-DG组平均错误答案数为24.31,CCA-DG组平均错误答案数为34.88。独立样本t检验具有显著性( p < 0.05),表明ACA-DG组的错误答案明显少于CCA-DG组。在求助行为方面,ACA-DG组和CCA-DG组的平均求助次数分别为17.15次和13.76次。独立样本t检验差异有统计学意义( p < 0.05)。结果表明,ACA-DG组寻求帮助的频率明显高于CCA-DG组。对于非任务交互次数,ACA-DG组的平均值为59.16次,CCA-DG组的平均值为52.75次。独立样本t检验具有显著性(p < 0.05),表明ACA-DG组学习者的非任务交互显著高于CCA-DG组。关于知识复习,ACA-DG组的平均时间为1.85,CCA-DG组的平均时间为1.76。独立样本t检验无统计学意义( p > 0.05)。因此,两组的知识复习没有显著差异。
六、结论
从研究问题总结而得:
根据实验结果,本研究开发的基于自适应计算机代理的数字游戏帮助学习者获得了更好的学习成绩、更高的自我效能感和更低的英语学习焦虑。自适应计算机代理机制对使用数字游戏的学习者产生正向影响。
虽然本研究支持ACA-DG的有效性,但也存在一定的研究局限性。首先,这项研究受到冠状病毒流行的影响,样本量不够大。因此,行为分析的结果是否可以外推到其他课程,还需要进一步讨论。其次,本研究制定的角色转换策略是基于专家决策的。第三,实验时间只有一周,因此在根据研究结果进行推论时需要谨慎。
未来,我们将尝试收集更多用于机器学习的学习者行为数据,并增加对学习者感受的监控,以形成更准确的智能体角色转换决策树。本研究中使用的教师、同伴和学生计算机代理的交互和行为模式也值得进一步调整和补充。此外,我们希望在未来进行更长的实验,以进一步研究所提出的方法在各个维度上的有效性。