基于概念图的虚拟学习情境探究社区框架——
提升学生地球科学学习成果与反思倾向
(A concept map‑based community of inquiry framework for virtual learning contexts to enhance students’ earth science learning achievement and reflection tendency)
Education and Information Technologies (2024) 29
一、概念解析
基于概念图的探究社区框架VR系统(CM - CoI -based VR):
CoI框架是一种用于理解和评估在线教育环境的理论模型,它包含三个核心要素:认知在场、社会在场和教学在场。
1.认知在场:认知在场关注的是学习者在智力参与和批判性思维方面的活动。在VR环境中,通过整合基于概念图的CoI框架(cm-coi),学习者能够积极参与认知在场,通过创建知识地图、操纵物体、浏览信息和建立概念联系来探索复杂思想,从而提高分析能力和高层次思维能力。
2. 社会在场:社会在场指的是学习者在虚拟学习社区中建立和维持联系、信任和归属感的能力。通过基于cm-coi的VR方法,学习者能够参与到同伴的概念图中,探索不同观点,参与讨论,从而培养社会存在感。
3. 教学在场:教学在场涉及教师对学习经验的设计、促进和指导。教师可以通过提供教学指导、及时反馈和促进VR环境中的有意义反思来增强教学在场。
图1 基于cm - coi的VR方法结构
传统的基于人工智能的VR系统和基于概念图的探究社区框架VR系统区别:
学生在进入学习系统时遇到的界面设置是相同的,包括初始引导、操作说明、背景故事介绍、知识获取、知识评估和结束屏幕。然而,主要的区别在于概念图阶段:在基于概念图的探究社区框架VR系统中,学生通过完成概念图积极参与学习。传统的基于基于人工智能的VR系统中,学生通过回顾基于视频或基于文本的材料,以加强以前学过的内容并构建他们的知识。尽管存在这种差异,但两种系统所涵盖的知识和内容是相同的。
图2 示例填空概念图问题和选项
二、摘要
研究目的:随着虚拟现实(VR)的日益普及,探究社区(CoI)框架的整合提供了其在促进VR环境中学生学习方面的作用的见解。然而,如果没有适当的引导,VR可能会阻碍学生的知识获取和组织。为了解决这个问题,我们为九年级的地球科学课程开发了一个基于概念图的探究社区(CM-CoI)框架VR系统,以调查其对学习成绩、反思倾向和感知的影响。
研究对象:参与者是两个班的学生,共58名九年级学生,年龄在14 - 15岁之间。其中一个班被指定为实验组,共有29名学生,另一个班被指定为对照组,也有29名学生。实验组采用基于概念图的探究社区框架VR系统进行学习,对照组采用传统的基于人工智能的VR方法。
研究结果:结果显示,实验组在学习成绩和反思倾向上都优于对照组。访谈显示,实验组的学生发现该方法有助于理清困惑的知识。本研究证明了CM-CoI-based VR系统系统在提高学习成绩和反思倾向方面的潜力。
三、研究问题
(1)使用CM-CoI-based VR方法的学生是否比使用传统CoI-based VR方法的学生取得了更好的学习成绩?
(2)使用CM-CoI-based VR方法的学生是否比使用传统CoI-based VR方法的学生表现出更高的反思倾向?
(3)学生对在地球科学课程中使用CM-CoI-based VR方法和传统的CoI-based VR方法的看法有何差异?
四、研究设计
(一)实验工具
本研究使用VR平台Uptale作为开发工具。教育工作者可以通过网络界面设计VR学习内容,将视频、图像和3D信息集成到系统中。图3显示了基于cm - coi的VR系统的系统结构,包括VR配置模块、VR交互模块和学习进度模块三个模块。通过VR配置模块,教师可以将相关数据输入到概念图数据库、教材数据库、测评数据库、VR场景数据库中。概念图数据库中包含了学生在学习活动中需要完成的概念图。教学材料数据库包括与课程单元相关的文本、图像和视频。评估数据库包含测试问题,要求学生匹配不同的学习场景。此外,在VR活动中,学生的学习行为和答案被记录在学习进度数据库中。教师可以使用学习进度模块来观察学生的学习过程。
图3 基于cm - coi的VR系统系统结构
2.测量工具
(1)学习成就评估:
本研究通过前测和后测来评估学生的学习成就。前测包含50道选择题,每题2分,后测则包括基础题和高级题,基础题由16道选择题和6道填空题组成,高级题包含10道选择题,两者总分均为100分。这两项测试的KR20值均为0.92,显示出较高的信度。
(2)反思倾向问卷:
反思倾向问卷基于Kember等人提出的量表改编,包含三个维度共12个条目,采用李克特4分量表评分。问卷在VR体验前后进行,以评估反思倾向对学生学习的影响。问卷的总体Cronbach’s alpha值为0.95,显示出良好的内部一致性。
(3)定性访谈:
本研究采用半结构化访谈收集定性数据,访谈提纲包含七个问题,旨在了解学生对VR体验的看法和体验。共12名学生参与访谈,访谈以普通话进行并翻译成英语。访谈内容通过内容分析方法进行编码和主题组织,以保护受访者匿名性。
(二)实验对象和方法
这项研究发生在台湾北部的一所初中,在那里教授了为期两周的地球科学和天文学课程,题目是“我们的宇宙”。参与者是两个班的学生,共58名九年级学生,年龄在14 - 15岁之间。其中一个班被指定为实验组,共有29名学生,另一个班被指定为对照组,也有29名学生。实验组采用基于概念图的探究社区框架VR系统进行学习,对照组采用传统的基于人工智能的VR方法。两组接受相同的教学内容和材料,教学由同一位经验丰富的老师进行。
(三)实验过程
图4 实验流程
五、研究结果
(一)学习成绩分析
根据上图独立样本t检验分析显示,p=0.50>0.05,学习成绩前测不存在显著差异,表明两组学生在学习活动前具有相当的学习水平。
组别 | N | M | SD | F |
实验组 | 29 | 74.8 | 8.59 | 4.92 |
对照组 | 29 | 67.9 | 8.45 |
表1 批判性思维后测协方差分析结果
为了评估采用ANCOVA是否合适,我们首先进行了同质性检验。确认回归齐性假设通过(F=0.04,p >0.05)。然后进行ANCOVA,以前测成绩为协变量,后测成绩为因变量,剔除问卷前评分的影响,采用协方差分析(ANCOVA)检验两组间的差异,如表1所示。结果显示(p < 0.05),两组间差异有统计学意义;本研究的分析结果表明,在提高学生学习成绩方面,CM-CoI-based VR方法比传统的CoI-based VR方法更有效。
(二)反思倾向分析
组别 | N | M | SD | F |
实验组 | 29 | 3.11 | 0.08 | 380.5 |
对照组 | 29 | 2.80 | 0.09 |
表2 两组学生元认知评分的协方差分析结果
为了评估采用ANCOVA是否合适,我们首先进行了同质性检验。确认回归齐性假设通过(F=0.19,p >0.05)。然后进行ANCOVA,以前测成绩为协变量,后测成绩为因变量,剔除问卷前评分的影响,采用协方差分析(ANCOVA)检验两组间的差异,如表2所示。结果显示(p < 0.05),两组间差异有统计学意义;本研究的分析结果表明,CM-CoI-basedVR方法在增强学生反思倾向方面比传统的CoI-based VR方法更有效。
(三)访谈分析
如表3所示,基于对访谈数据的分析,出现了四个主要观点:提高学习成绩、提高知识理解、提高学习动机、提供改进建议。分析结果表明,无论是CM-CoI-based VR方法还是传统的CoI-based VR方法,大多数学生都对VR系统持积极态度。
1. 提高学习成绩:
实验组学生普遍认为,基于CM-CoI的VR方法能有效提高学习成绩,相比传统文本材料,VR提供了视觉和多媒体材料的集成,帮助学生理解抽象概念。
2. 提高知识理解:
实验组学生认为CM-CoI-based VR方法有助于识别和加深对天文知识的理解和区分,而对照组学生较少提及这一点。概念图的整合帮助澄清误解,促进有意义的学习。
3.提高学习动机:
两组学生都表示,与传统的基于文本的学习相比,VR技术作为一种新的教学方法增强了他们的学习动机,并使他们更专注于教学材料。
4. 提供改进建议:
少数学生对学习系统提出了反馈,主要关注点包括系统速度慢和操作问题。这些反馈为未来VR系统的发展和改进提供了宝贵的见解。
表3 访谈数据
六、结论
本研究探讨了将基于概念图和社区参与(CM-CoI)的虚拟现实(VR)方法应用于地球科学课程对学生学习成绩和反思倾向的影响。
1.学习成绩和反思倾向:
研究发现,使用基于CM-CoI的VR方法的学生在学习成就和反思倾向方面与传统CoI-based VR方法的学生存在显著差异。
实验组学生普遍对基于CM-CoI的VR方法持积极态度,报告称学习成果显著提高,对主题的理解更深入,学习动机增强。
2.学习体验:
实验组和对照组学生都认为基于VR的学习具有内在的动机优势,能够提高他们的学习成绩、促进反思和提升整体学习体验。
3.研究局限性:
研究的样本量限制了结果的普遍性,干预时间较短,且数据收集依赖于自我报告措施。
4.未来研究方向:
建议未来研究包括更大、更多样化的样本,进行长期干预,并纳入客观衡量标准,还可以整合学习分析技术,研究不同学习需求的有效性,探索在其他科目和学科的适用性,以及评估VR系统的可用性和用户友好性。