从经验到移情:基于移情虚拟现实的学习方法提高EFL学习者的移情和写作表现

从经验到移情:基于移情虚拟现实的学习方法提高EFL学习者的情和写作表现

From experience to empathy: An empathetic VRbased learning approach to improving EFL learners’ empathy and

writing performance

Computers & Education 220 (2024) 105120

一、概念解析

1.VR在EFL写作学习中的应用:

本研究开发了一个基于共情的VR学习系统,如图1所示。该系统提供音频和文本脚手架作为内容学习的线索,实现与虚拟环境的交互,设置知识测试,并提供正反馈。此外,该系统的一个关键特点是强调移情互动,旨在培养学生之间的换位思考,鼓励他们表达自己的真实情感。具体有三种形式:

(1)提供音频,让学生了解他人旅行中的想法和感受,引导他们用文本和语音表达自己。

(2)用音频脚手架促进学生反思旅游中不文明行为,思考其对景区的影响,并探索保护措施。

(3)通过文字脚手架,鼓励学生在每个场景体验后分享自己的思考和情感。

图1 VR学习系统的功能

2.E-VRL方法

如图2所示,本研究采用四阶段框架来组织综合过程,整合Jacques提出的ODIP(观察、描述、解释和证明)批判性思维策略来增强活动,建立E-VRL方法。E-VRL方法通过一个循序渐进的过程来增强同理心,这个过程包括四个主要阶段:“发现”、“沉浸”、“连接”和“分离”。

发现阶段:教师通过任务单中的文本脚手架引导学生观察和互动VR场景,激发他们的好奇心和探索欲。

沉浸阶段:学生全身心投入他人情境,通过VR系统的音频脚手架,多感官体验他人的思想和情感。

连接阶段:学生将自己的VR体验与他人经历相联系,实现情感共鸣。

分离阶段:学生回到原有身份,利用深化的理解获得更深刻的见解。

图2 同理心虚拟现实学习方法

3.认知网络分析法(ENA)

认知网络分析法(Epistemic Network Analysis, ENA)是一种用于分析和可视化对话数据中认知元素之间关系的工具。在这项研究中,ENA被用来评估和比较实验组(EG)和对照组(CG)学生的对话性共情表现。以下是ENA在这项研究中的具体应用步骤:

(1) 转录与编码:

将课堂录音转录成文本,根据DIALLS编码框架(Dialogic empathy coding scheme),两位有经验的编码者对转录的对话进行编码。这个框架包括了低对话性(如管理、陈述、接受/丢弃)和高对话性(如扩展、邀请、元对话、推理、元对话推理)的编码类别。

(2)编码一致性:

为了提高编码数据的可靠性,两位编码者独立编码随机选择的对话样本,并对编码差异进行讨论和协商,直到达成一致。

(3)数据组织:

将学生学习话语数据按照ENA数据格式组织,使用二进制编码表示话语中是否存在特定的八种对话性移动。

对话性移动是指在对话或讨论中,参与者为了推进交流所采取的不同行为或策略。这些移动可以看作是对话中的“动作”,它们帮助构建和维持对话的流程,使对话能够朝着特定的方向发展。学生在对话中可能采取的八种不同的交流行为或策略,比如提问、回答、解释、评论等

二进制编码是一种使用两个数字(通常是0和1)来表示信息的方法。

例如,假设我们有三种对话性移动:提问(Q)、回答(A)和评论(C)。我们可以这样分配二进制位:

第1位(最右边的位):评论(C)

第2位:回答(A)

第3位:提问(Q)

如果一个学生的话语中包含了提问和评论,但没有回答,那么这段话语的二进制编码可能是“101”。这里的“1”表示提问和评论的位被激活,而“0”表示回答的位没有被激活。

(4) ENA工具应用:

将最终的文件传输到ENA Webkit工具中,该工具通过一系列操作(如归一化和降维)生成加权网络,以可视化认知元素之间的关系。

归一化:归一化就是把这两组数据都转换到一个相同的范围,比如0到1,这样它们就可以在相同的标准下进行比较了。

降维:把复杂的高维数据简化为几个关键的维度。

(5) 网络模型构建:

ENA工具将多个与特定内容相关的对话性共情编码数据行(即一个对话中的所有数据行)聚合为一个节(stanza)。在这项研究中,一个对话包括了4-5个学生的全部话语轮次。

(6) 分析与比较:

通过比较EG和CG的ENA网络模型,研究者可以观察两组学生在高对话性移动(如扩展、推理、元对话)和低对话性移动(如管理、陈述、接受/丢弃)方面的连接系数差异。

通过ENA网络模型,研究者可以确定两组学生在对话性共情方面的差异和特点,例如,哪些对话性移动在两组学生中更为频繁地共现。

(7)统计测试:

最后,通过两样本t检验来确定ENA网络模型之间的差异是否具有统计学意义。

二、摘要

研究目的:EFL在人际交往和跨文化交际中起着至关重要的作用。写作通常被认为是EFL学习者最具挑战性的技能之一。如今,由于缺乏现实生活经验和移情培养,一些学生很难创造出能引起读者共鸣的词汇。虚拟现实(VR)不仅提供真实的体验,而且被称为“终极同理心机器”。因此,本研究提出了一种基于共情虚拟现实的学习(E-VRL)方法,为学习者提供获得真实体验的途径,进一步促进学习者共情。

研究对象:为了评估该方法的有效性,本研究招募了63名初中生参与准实验,随机分为采用基于同理心的虚拟现实学习E-VRL)方法的实验组(EG)和采用虚拟现实学习方法(VRL)的对照组(CG)。

实验结果:结果表明,E-VRL方法比VRL方法更能提高学生的认知共情和对话共情。此外,研究还发现,EG组的学生在观点和内容的运用、词汇的选择和写作中的声音方面都优于CG组的学生。本研究证明了所提出的E-VRL方法的有效性,并为未来基于虚拟现实的EFL写作活动和VR环境的设计研究提供了有价值的见解。

三、研究问题

(1)与虚拟现实学习(VRL)方法相比,E-VRL是否提高了学生的共情能力和对话式共情能力对话式共情能力是在对话中理解和感受他人情绪、想法,并据此作出恰当反应的能力,

(2)与VRL方法相比,E-VRL方法是否能提高学生的写作成绩?

四、研究设计

(一)实验工具

1.基于共情的VR学习系统

本研究开发了一个基于共情的VR学习系统,其结构如图3所示。教师可以为学生提供交互式VR(支持内容学习、知识测试、自主探索、有意义的选择、共情互动)和共情话语数据库。学生可以通过可穿戴VR设备观察VR学习系统中的场景,并与虚拟环境进行互动。在这个过程中,学生的输入将被收集到学习话语日志中,供老师进一步分析。

图3 系统结构

2.测量工具

同理心问卷基于修订版的人际反应指数(Interpersonal Reactivity Index
 IRI),用于评估学生的同理心能力。问卷包含三个维度:观点采纳、幻想和共情关怀,共17个问题,采用5点李克特量表评分。

对话性同理心编码方案(DIALLS编码方案):用于分析学生话语中对话性同理心的表现。该方案基于对话功能,将话语行为分为低对话性和高对话性两类,包括陈述、接受/丢弃、扩展、邀请、元对话、推理和元对话推理等七种话语行为。

英语叙事表现评分标准:参考了Allagui(2021)的叙事量表和当地高中入学考试的英语作文评分标准,并结合了Crowe和Hodges(2022)的作文声音维度,用于培养学生的创造力和同理心。评分标准包含思想内容、组织结构、词汇选择、声音和机械(语法、拼写和标点)五个维度,总分为20分。

(二)实验对象和方法

共有63名12-15岁的学生参加了这项研究,其中来自中国东南部的37名男性(58.7%)和26名女性(41.3%)。为了确保基于虚拟现实的学习体验,所有参与者的视力正常或矫正。根据预访谈,没有参与者参与过基于虚拟现实的英语写作活动。参与者被随机分为两组:实验组(EG), 32名学生使用基于同理心的虚拟现实学习E-VRL)方法参与写作活动;对照组(CG)有31名学生参加了虚拟现实学习方法(VRL)的写作活动,没有同理心设计的方法。

(三)实验过程

图4 实验流程

五、研究结果

(一)共情能力分析

根据上图独立样本t检验分析显示,p=0.356>0.05,共情能力前测不存在显著差异,表明两组学生在学习活动前具有相似的共情能力倾向。

组别

N

M

SD

F

实验组

32

3.09

0.09

74.9

对照组

31

2.88

0.32

表1  批判性思维后测协方差分析结果

为了评估采用ANCOVA是否合适,我们首先进行了同质性检验。确认回归齐性假设通过(F=0.5,p >0.05)。然后进行ANCOVA,以前测成绩为协变量,后测成绩为因变量,剔除问卷前评分的影响,采用协方差分析(ANCOVA)检验两组间的差异,如表1所示。结果显示(p < 0.05),两组间差异有统计学意义;也就是说:实验组的共情能力高于对照组。

根据上图独立样本t检验分析显示,换位思考( p > 0.05)、幻想( p > 0.05)和共情关注( p > 0.05)前测不存在显著差异,表明两组学生在参与学习活动前具有相当的水平。

组别

N

M

SD

F

换位思考

实验组

32

3.32

0.08

99.1

对照组

31

3.07

0.06

幻想

实验组

32

3.09

0.09

34.1

对照组

31

2.88

0.32

共情关注

实验组

32

2.95

0.07

0.47

对照组

31

2.94

0.05

表2 后测分析结果

后验方差齐性检验得出如下结果:换位思考(F =1.85,p = 0.18> 0.05)、幻想(F = 0.03,p = 0.96 > 0.05)和共情关注(F = 0.28,p = 0.60 > 0.05)均满足方差齐性要求,表明可以采用方差分析(ANCOVA)。研究者利用共情前测和后测结果对两组共情能力进行ANCOVA。表2的结果显示,EG和CG在换位思考( p < 0.05)和幻想( p< 0.05)维度上存在显著差异。然而,两组在共情关注维度上没有显著差异(p > 0.05)。

(二)对话性共情分析

图5  EG和CG标绘点的平均值

图5显示了EG和CG各自的ENA网络,以进一步确定其对话共情表现特征之间的区别。为了便于比较,EG中的每个学生用红点表示,而CG中的每个学生用蓝点表示。EG ENA网络的质心用红色方格表示,CG的质心用蓝色方格表示。方形周围的虚线框表示每组的95%置信区间。双样本t检验表明,EG的ENA网络(Mean = 0.24,SD = 0.25)与CG的ENA网络(Mean = - 0.24,SD = 0.08)在x轴上存在显著差异(t = 10.47,p < 0.01)。

x轴右方向的ENA空间主要包含EX、RE、MD、MD_RE等节点,说明右侧在对话内倾向于表现出高对话性,而左侧除in外均为低对话运动。研究发现,EG话语中的共情表现更倾向于高对话动作,而CG话语中的共情表现更倾向于低对话动作。

图6  EG和CG的ENA网络。(a)EG与CG的对比网络,(b)EG的平均网络,(c)CG的平均网络。

为了更好地解释ENA网络结构的组间差异,并辨别学生对话共情的变化,我们对EG和CG的ENA网络图进行了减法运算。将边缘颜色设置为与连接更强的组相匹配,边缘的厚度表示差异的程度。从图6(a)中可以看出,红线表示EG平均网络中节点的连接系数高于CG。相反,蓝线则表示相反的趋势。此外,本研究进一步观察和比较了两组平均网络图中每两个元素的连接结构和相关强度。如图6(b)所示,与CG相比,EG在各个方面都表现出更高的连接系数。具体而言,EG显示陈述和扩展(0.38)、陈述和推理(0.27)以及陈述和元对话(0.24)之间有更强的联系。此外,EG的平均网络在陈述和元对话推理(0.06)、邀请和扩展(0.11)、邀请和推理(0.08)、管理和接受/丢弃(0.08)、管理和推理(0.05)、管理和扩展(0.05)等方面的连接系数略高。以及元对话和扩展(0.06)。这一发现表明EG的共情话语表现出更高的频率和这些对话类型的共现性。相反,图6(c)显示,在陈述与邀请(0.76)和陈述与管理(0.45)之间的联系上,CG的表现优于EG。

(三)EFL写作表现分析

根据上图独立样本t检验分析显示,整体写作表现( p > 0.05)、思想与内容( p > 0.05)和组织、选词( p > 0.05)、语音( p > 0.05)、力学( p > 0.05)前测不存在显著差异,表明两组学生在参与学习活动前具有相当的水平。

组别

N

M

SD

F

整体写作表现

实验组

32

13.20

0.10

1.29

对照组

31

11.50

0.11

思想与内容

实验组

32

3.09

0.09

36.83

对照组

31

2.88

0.32

组织

实验组

32

2.95

0.07

0.253

对照组

31

2.94

0.05

选词

实验组

32

2.45

0.11

52.40

对照组

31

2.21

0.11

语音

实验组

32

2.77

0.12

242.9

对照组

31

2.15

0.11

力学

实验组

32

2.21

0.13

3.50

对照组

31

2.18

0.13

表3 两组学生协方差分析结果

为了评估采用ANCOVA是否合适,我们首先进行了同质性检验。确认回归齐性假设通过( p >0.05)。然后进行ANCOVA,以前测成绩为协变量,后测成绩为因变量,剔除问卷前评分的影响,采用协方差分析(ANCOVA)检验两组间的差异.表3揭示了两组学生在整体写作表现上存在显著差异的事实(p < 0.05)。在5个维度中,EG和CG得分在语音(p < 0.05)、思想与内容( p < 0.05)和选词(p < 0.05)上差异有统计学意义,在组织( p > 0.05)和力学( p > 0.05)上差异无统计学意义。根据研究结果,使用E-VRL方法参加写作活动的学生在思想和内容、用词和声音的几个方面都有不同程度的提高。

(四)讨论

1.E-VRL方法促进共情能力的潜力

实验组(EG)学生的共情能力整体优于对照组(CG),特别是在幻想和换位思考两个维度上。这表明E-VRL(增强型虚拟现实写作)方法的写作活动有助于提升共情能力,特别是认知共情能力。E-VRL方法通过提供多模态学习资源,促进学生构建丰富的心理表征,从而增强幻想能力。同时,四阶段共情框架的使用帮助学生在虚拟环境中锻炼想象力,推断他人的情绪和想法,培养认知同理心。

换位思考能力的提升可能归因于E-VRL方法提供的认知资源和特定的训练任务,如让学生听录音并用特定短语造句,以推断他人的想法和情绪,从而促进视角转换。然而,共情关怀维度没有显著差异,原因可能包括VR研究对象的选择(金华双龙洞景区)缺乏强烈情感场景,以及VR体验的新颖性和愉悦感可能阻碍了共情关怀的发展。

2.E-VRL方法发展对话共情的潜力

ENA(情感网络分析)结果揭示了实验组(EG)和对照组(CG)在对话共情结构上存在显著差异,EG在与高对话移动相关的连接系数上普遍高于CG。表明同理心培养能够提升沟通技巧和社交能力。这种差异可能由两个因素解释:

EG学生通过参与虚拟环境和共情任务,经历了发现、沉浸、联系和脱离的四阶段循环,这加深了他们对主题内容的理解,促进了有意义的话语交流。

在VR环境中,EG学生在描述、解释、证明等学习行为中得到脚手架支撑,利用VR资源表达观点和情感,增强了对话交流,如扩展和推理。Crowe和Hodges(2022年)指出,同理心的核心在于理解,EG学生在沉浸和联系阶段通过倾听和建立联系,感同身受他人的情绪和想法,这不仅提高了语言理解能力,也促使他们在交流中更关注语言本身,从而促进了元对话的参与。

3.E-VRL方法对提高EFL写作表现的潜力

与对照组(CG)相比,实验组(EG)在使用E-VRL(增强型虚拟现实写作)方法的写作活动中表现出显著的整体写作表现提升,特别是在思想和内容、词语选择和声音方面,尤其是声音维度。

EG的进步可以归因于基于移情设计的VR学习系统,该系统提供了沉浸式体验和文本及音频脚手架,鼓励学生完成任务和采用替代观点,促进了学生与学习材料的情感和认知互动。ODIP策略帮助学生将情绪和想法转化为书面脚本,加深了对主题的理解,使描述更具相关性和说服力。此外,这种策略还增强了学生的认知能力,使他们的语言表达更准确和有趣,并鼓励学生在特定语境中整合和表达思想和情感。

EG和CG在组织和力学方面没有显著差异,这可能与VR学习系统提供的生动逼真的学习环境和短期干预(180分钟)有关,以及写作规范可能需要更长时间的训练来培养。

六、结论

从研究问题总结而得:

本研究提出了一种新的E-VRL(增强型虚拟现实写作)方法,该方法融合了共情、ODIP批判性思维策略ODIP策略是一种批判性思维和深度观察的方法,用于促进与艺术作品的对话和深度观察。ODIP代表观察(Observe)、描述(Describe)、解释(Interpret)和证明(Prove)四个步骤和VR技术,并构建了一个四阶段框架。通过实证研究,本研究验证了E-VRL方法在提高学生共情能力和写作表现方面的有效性。研究的实际意义在于强调了VR在英语作为外语(EFL)写作教学中从体验到移情的重要性,并为基于VR的EFL写作活动设计和VR环境开发提供了参考。

研究的局限性包括:

1.实证研究仅限于一所初中的自愿招募学生,未来研究应扩展到其他教育阶段以验证E-VRL方法的泛化性。

2. 实验期仅为3周,而写作和共情能力的培养需要更长时间的培养,因此需要在更长的实验期内验证E-VRL方法的有效性。

3. 实验主要关注叙事性写作,未来研究应扩大到其他写作体裁,如说明文,以丰富研究的多样性。

4. 建议未来研究考虑将其他技术(如人工智能)纳入VR学习环境,以提供个性化体验,增强对他人的理解和培养共情能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值