机器学习:常用激活函数

在机器学习中,一些激活函数更为常用,因其表现出色且易于训练。以下是一些最常用的激活函数:

ReLU函数(Rectified Linear Unit):

ReLU(Rectified Linear Unit)是深度学习中最常用的激活函数之一。其定义如下:

ReLU(x)=max⁡(0,x)

简而言之,对于输入 x,如果 x 大于零,则输出为 x;否则,输出为零。这使得 ReLU 函数具有线性和非线性的特性,尤其在正数区域表现为线性。

特点和优势:
  1. 非线性: ReLU引入了非线性,这对于神经网络的表示能力非常重要。线性激活函数堆叠在一起仍然是线性的,而非线性激活函数允许网络学习更复杂的函数。

  2. 计算简单: ReLU的计算非常简单,只需比较输入是否大于零。这有助于提高训练和推理的效率。

  3. 稀疏激活性: ReLU的设计导致一些神经元在训练中可能会变得“死亡”,即永远不会被激活。这在某种程度上有助于稀疏性,使网络更加高效。

  4. 抑制梯度消失: 相比于一些传统的激活函数(如Sigmoid、Tanh),ReLU对于梯度的反向传播有助于缓解梯度消失问题,有利于深层网络的训练。

注意事项和问题:
  1. 死亡ReLU问题: 当输入为负数时,ReLU输出为零,导致相应神经元对于梯度的更新为零,从而无法继续学习。这可能导致一些神经元在训练过程中失去活性。

  2. 不适用于所有情况: 对于负数输入,ReLU输出为零,这可能不适用于所有类型的数据和任务。

为了解决死亡ReLU问题,一些改进的ReLU变种被提出,如Leaky ReLU、Parametric ReLU(PReLU)等,它们在负数部分引入小的负斜率,以避免神经元完全失活。

Sigmoid函数:

Sigmoid函数是一种常用的激活函数,其定义如下:

\sigma(x) =\frac{1}{1+e^{-x}}

其中,e 是自然对数的底。Sigmoid函数将任意实数映射到一个范围在 (0, 1) 之间的值。这使得它在二分类问题中常被用作输出层的激活函数,将网络的输出转换为概率值。

特点和优势:
  1. 输出范围: Sigmoid函数的输出在 (0, 1) 范围内,可以被解释为概率值,适用于二分类问题。

  2. 平滑性: Sigmoid函数是平滑且可导的,这有助于使用梯度下降等优化算法进行训练。

  3. 用于隐层: 在一些早期的神经网络中,Sigmoid函数被用作隐层的激活函数,但在深度网络中,由于梯度消失问题,ReLU等激活函数更为常见。

注意事项和问题:
  1. 梯度消失问题: 在深度网络中,Sigmoid函数容易导致梯度消失问题,即在反向传播过程中,梯度逐渐减小,使得网络参数无法得到有效更新。

  2. 输出偏离中心: Sigmoid函数的输出在接近 0 或 1 时梯度变得非常小,导致权重更新缓慢。这使得网络训练相对较慢。

  3. 不以零为中心: Sigmoid函数的输出总是正数,不以零为中心,这可能导致某些神经元始终保持负值,使它们对梯度的更新非常小。

由于上述问题,Sigmoid函数在深度学习中的隐层中逐渐被其他激活函数(如ReLU、Leaky ReLU等)所取代。然而,在输出层用于二分类问题时,Sigmoid函数仍然是一个常见的选择。

Softmax函数:

Softmax函数是一种常用的激活函数,通常用于多类别分类问题的输出层。它将网络的原始输出转换为表示各类别概率分布的向量。Softmax函数的定义如下:

Softmax(x)_{i}=\frac{e^{x_{i}}}{\sum_{j=1}^{n}e^{^{x_{j}}}}

其中x_{i}是原始输出的第 i 个元素, n是类别的总数。

Softmax函数的特点和作用:
  1. 概率分布: Softmax将网络的输出转换为一个概率分布,确保所有类别的概率之和为1。每个类别的概率代表该类别的相对置信度。

  2. 多类别分类: Softmax广泛应用于多类别分类问题,例如图像分类,自然语言处理中的词性标注等。

  3. 对数似然损失: 在训练过程中,Softmax通常与对数似然损失(cross-entropy loss)一起使用,帮助最小化模型输出与真实标签之间的差距。

Softmax函数的计算过程:
  1. 计算每个类别的原始输出 x_{i}

  2. 对所有原始输出进行指数运算,得到 e^{x_{i}}​。

  3. 计算所有指数项的和: \sum_{j=1}^{n}e^{x_{j}}​。

  4. 将每个 exiexi​ 除以总和,得到每个类别的概率: \frac{e^{x_{i}}}{\sum_{j=1}^{n}e^{x_{j}}}​​。

注意事项和问题:
  1. 数值稳定性: 在实际计算中,可能遇到指数运算导致数值过大溢出的问题。为了提高数值稳定性,可以对每个x_{i}减去输出中的最大值。

  2. 类别不平衡: 如果某些类别的原始输出较大,Softmax可能导致模型对这些类别过于自信。在处理类别不平衡问题时,可能需要额外的措施。

这三种激活函数在各种任务中经常使用。ReLU广泛应用于隐藏层,Sigmoid和Softmax常用于输出层,适用于分类问题。另外,Leaky ReLU、PReLU、ELU等变种也在不同场景中得到应用,具体的选择取决于实际问题的性质和网络结构。在实践中,通常通过实验和交叉验证来确定最适合特定问题的激活函数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值