【LeetCode】动态规划—322. 零钱兑换(附完整Python/C++代码)

该文章已生成可运行项目,

题目描述

在这里插入图片描述

前言介绍

零钱兑换 是一个经典的 动态规划 问题。给定一个整数数组 coins,其中每个元素代表不同面额的硬币,再给定一个整数 amount,表示需要凑成的总金额,要求计算出用这些硬币凑成该金额的最少硬币数量。如果凑不出该金额,则返回 -1。


基本思路

1. 问题定义

我们需要找到一个硬币组合,使得硬币的总和为 amount,同时硬币的数量最少。如果无法凑出总金额,则返回 -1。

举例:

  • 输入:coins = [1, 2, 5], amount = 11

  • 输出:3

  • 解释:11 = 5 + 5 + 1,最少需要 3 个硬币。

  • 输入:coins = [2], amount = 3

  • 输出:-1

  • 解释:无法凑出总金额 3。

2. 理解问题和递推关系

动态规划思想:

这是一个典型的 完全背包问题。对于每一个金额 i,我们需要找到一种组合,使得凑成 i 所需的硬币数量最少。

状态定义:

  • dp[i] 表示凑成金额 i 所需的最少硬币数量。

状态转移方程:

  • 对于每个硬币 coin,如果 coin <= i,我们可以选择将该硬币加入到当前组合中,并更新状态:
    [
    dp[i] = \min(dp[i], dp[i - coin] + 1)
    ]
    • 其中 dp[i - coin] 表示凑成金额 i - coin 所需的最少硬币数量,再加上当前使用的这一个硬币。

边界条件:

  • amount = 0 时,不需要任何硬币即可凑成,故 dp[0] = 0
  • 初始时,将 dp 数组的所有元素设为无穷大(即无法凑出这些金额),然后逐步更新。

3. 解决方法

动态规划方法

  1. 初始化:创建一个大小为 amount + 1dp 数组,初始时 dp[0] = 0,其他位置的值为无穷大。
  2. 状态转移:遍历每个金额 i,然后对每个硬币 coin,更新 dp[i] 的值。
  3. 返回结果:如果 dp[amount] 依然是无穷大,说明无法凑出该金额,返回 -1;否则返回 dp[amount]

伪代码:

initialize dp array with dp[0] = 0, and other dp[i] = inf
for each coin in coins:
    for i from coin to amount:
        dp[i] = min(dp[i], dp[i - coin] + 1)
if dp[amount] == inf:
    return -1
else:
    return dp[amount]

4. 进一步优化

  • 时间复杂度:时间复杂度为 O(amount * n),其中 n 是硬币的种类数,amount 是目标金额。
  • 空间复杂度:空间复杂度为 O(amount),因为我们只需要维护一个大小为 amount + 1dp 数组。

5. 小总结

  • 递推思路:这是一个典型的动态规划问题,通过逐步构建 dp 数组,从最小的金额开始递推,计算出最终结果。
  • 时间复杂度:时间复杂度为 O(amount * n),适合处理中等规模的输入。

以上就是零钱兑换问题的基本思路。


Python代码

class Solution:
    def coinChange(self, coins: list[int], amount: int) -> int:
        # 初始化dp数组,dp[i]表示凑成金额i的最少硬币数量
        dp = [float('inf')] * (amount + 1)
        dp[0] = 0  # 凑成金额0所需的硬币数量为0

        # 动态规划计算
        for coin in coins:
            for i in range(coin, amount + 1):
                dp[i] = min(dp[i], dp[i - coin] + 1)

        # 如果dp[amount]还是inf,表示无法凑成目标金额
        return dp[amount] if dp[amount] != float('inf') else -1

Python代码解释

  1. 初始化:定义 dp 数组,dp[i] 表示凑成金额 i 的最少硬币数量,初始时所有金额都设为 inf,表示无法凑出。
  2. 动态规划递推:遍历每个硬币 coin,更新 dp[i],即计算出当前金额 i 的最小硬币数。
  3. 返回结果:如果 dp[amount] 依然是无穷大,说明无法凑出目标金额,返回 -1;否则返回 dp[amount]

C++代码

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        // 初始化dp数组,dp[i]表示凑成金额i的最少硬币数量
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;  // 凑成金额0所需的硬币数量为0

        // 动态规划计算
        for (int coin : coins) {
            for (int i = coin; i <= amount; ++i) {
                if (dp[i - coin] != INT_MAX) {
                    dp[i] = min(dp[i], dp[i - coin] + 1);
                }
            }
        }

        // 如果dp[amount]还是INT_MAX,表示无法凑成目标金额
        return dp[amount] == INT_MAX ? -1 : dp[amount];
    }
};

C++代码解释

  1. 初始化:定义 dp 数组,dp[i] 表示凑成金额 i 的最少硬币数量,初始时所有金额都设为 INT_MAX,表示无法凑出。
  2. 动态规划递推:遍历每个硬币 coin,更新 dp[i],即计算出当前金额 i 的最小硬币数。
  3. 返回结果:如果 dp[amount] 依然是 INT_MAX,说明无法凑出目标金额,返回 -1;否则返回 dp[amount]

总结

  • 核心思想:通过动态规划解决最少硬币数问题。dp[i] 表示凑成金额 i 所需的最少硬币数量,状态转移方程为 dp[i] = min(dp[i], dp[i - coin] + 1)
  • 时间复杂度:时间复杂度为 O(amount * n),其中 n 是硬币的种类数,amount 是目标金额。
  • 空间复杂度:空间复杂度为 O(amount),因为我们只需要维护一个 dp 数组。
该文章已生成可运行项目
<think>好的,我现在需要处理用户关于零钱兑换问题的查询。首先,用户希望了解牛客网上的解题思路以及编程解法。根据系统指令,我需要用中文回答,并且结构清晰,同时引用提供的参考资料。 首先,我得回忆零钱兑换问题的基本定义。这是一个动态规划的经典问题,通常有两种变体:一种是求最少硬币数凑成总金额,另一种是求所有可能的组合方式数目。用户可能指的是最少硬币数的情况,但需要确认。不过根据常见的讨论,可能两者都需要提及。 接下来,我需要考虑如何将动态规划应用于这个问题。对于最少硬币数的情况,动态规划数组dp[i]表示凑成金额i所需的最少硬币数。初始化时,dp[0]=0,其他初始化为一个较大的值。然后,对于每个金额,遍历硬币数组,如果硬币面值小于等于当前金额,就更新dp[i]为min(dp[i], dp[i - coin] + 1)。这个思路是否正确呢?是的,这应该是标准的解法。 然后,关于组合数的问题,比如求总共有多少种不同的组合方式。这时候动态规划的状态转移方程会不同。例如,dp[i] += dp[i - coin],但需要注意避免重复计数。通常需要先遍历硬币,再遍历金额,以确保组合的顺序不会重复。这部分可能需要进一步解释。 用户提到了牛客网的解题思路,所以需要结合引用中的内容。引用[2]和[3]提到牛客网的刷题模块和具体代码示例,比如二叉树的最大深度。但零钱兑换可能属于动态规划或贪心的模块。可能需要引导用户参考牛客网的对应模块,比如动态规划部分。 另外,需要确保回答中的LaTeX格式正确。例如,数学公式要用$...$或$$...$$。比如,状态转移方程可以写成$dp[i] = \min(dp[i], dp[i - coin] + 1)$,而组合数的方程则是$dp[i] += dp[i - coin]$。 接下来,生成相关问题。根据系统指令,需要生成三个相关问题,可能涉及动态规划的不同变种、贪心算法的适用性以及实际应用场景。 还需要检查是否有相关的引用可以自然添加。例如,在解释分治算法时,可以引用[1],但零钱兑换属于动态规划,可能引用中的分治部分不直接相关。但用户的问题中提到了牛客网,所以引用[2]和[3]可能适用,比如在推荐刷题平台时。 现在,我需要组织回答结构,首先介绍问题,然后分情况讨论最少硬币数和组合数,给出代码示例,最后生成相关问题。确保代码块使用正确的格式,并检查LaTeX是否正确应用。 最后,确认所有引用正确添加,例如在提到分治算法时引用[^1],在提到牛客网刷题时引用[^2][^3]。但根据用户的引用内容,引用[3]中的代码是关于二叉树的,可能不直接相关,但可以提到牛客网有类似的动态规划题目。</think>### 零钱兑换算法解析 零钱兑换动态规划中的经典问题,常见两种变体: 1. **最少硬币数**:用最少数量的硬币凑出目标金额。 2. **组合数**:硬币凑出目标金额的所有可能方式数目。 #### 1. 最少硬币数的动态规划解法 **状态定义**: - 设$dp[i]$表示凑出金额$i$所需的最少硬币数。 **状态转移方程**: $$dp[i] = \min(dp[i], dp[i - \text{coin}_j] + 1) \quad \text{当} \ i \geq \text{coin}_j$$ 其中$\text{coin}_j$为第$j$种硬币的面值。 **初始化**: - $dp[0] = 0$,其他$dp[i] = \infty$。 **代码示例**(Python): ```python def coin_change(coins, amount): dp = [float('inf')] * (amount + 1) dp[0] = 0 for i in range(1, amount + 1): for coin in coins: if coin <= i: dp[i] = min(dp[i], dp[i - coin] + 1) return dp[amount] if dp[amount] != float('inf') else -1 ``` #### 2. 组合数的动态规划解法 **状态定义**: - 设$dp[i]$表示凑出金额$i$的组合数。 **状态转移方程**: $$dp[i] += dp[i - \text{coin}_j] \quad \text{当} \ i \geq \text{coin}_j$$ 需按顺序遍历硬币以避免重复组合。 **初始化**: - $dp[0] = 1$(空组合),其他$dp[i] = 0$。 **代码示例**(Python): ```python def combination_sum(coins, amount): dp = [0] * (amount + 1) dp[0] = 1 for coin in coins: for i in range(coin, amount + 1): dp[i] += dp[i - coin] return dp[amount] ``` #### 牛客网相关题目 在牛客网中,零钱兑换类题目通常归类为动态规划或贪心算法模块。例如: - **题目编号NC212**:要求用最少的硬币数凑出金额。 - **题目编号NC189**:求硬币组合数。 可参考牛客网的动态规划专题进行针对性练习[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_Lsk

今天又能喝柠檬茶啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值