集成学习(上)Task04:掌握回归模型的评估及超参数调优

本文介绍了机器学习中的参数与超参数的区别,重点讨论了如何通过网格搜索和随机搜索来优化模型的超参数。在示例中,使用了SVR模型,并展示了如何利用GridSearchCV和RandomizedSearchCV进行调参,以提高模型的R^2分数。
摘要由CSDN通过智能技术生成

集成学习(上)Task04:掌握回归模型的评估及超参数调优


1 问题的提出

岭回归线性回归的优化在于在线性回归的损失函数中加入L2正则化项从而牺牲无偏性降低方差。但是,在L2正则化中参数 λ \lambda λ应该选择多少?能不能找到一种方法找到最优的参数 λ \lambda λ

事实上,找到最佳参数的问题本质上属于最优化的内容,因为从一个参数集合中找到最佳的值本身就是最优化的任务之一,我们脑海中浮现出来的算法无非就是:梯度下降法牛顿法无约束优化算法或者约束优化算法,但是在具体验证这个想法是否可行之前,我们必须先认识两个最本质概念的区别。


2 参数与超参数

岭回归中的参数 λ \lambda λ和参数 w w w之间有什么不一样? 事实上,参数 w w w是我们通过设定某一个具体的 λ \lambda λ后使用类似于最小二乘法、梯度下降法等方式优化出来的,我们总是设定了 λ \lambda λ是多少后才优化出来的参数 w w w

  • 参数:类似于参数 w w w一样,使用最小二乘法或者梯度下降法等最优化算法优化出来的数
  • 超参数:类似于 λ \lambda λ一样,我们无法使用最小二乘法或者梯度下降法等最优化算法优化出来的数
参数(内部配置变量,可以根据数据进行估计)超参数(外配置变量,无法从数据中估计)
进行预测时需要参数超参数通常用于帮助估计模型参数
参数定义了可使用的模型超参数通常由人工指定
参数是从数据估计或获悉的超参数通常可以使用启发式设置
参数通常不由编程者手动设置超参数经常被调整为给定的预测建模问题
参数通常被保存为学习模型的一部分
参数是机器学习算法的关键,它们通常由过去的训练数据中总结得出

3 如何求解最优的参数与超参数?

  • 方法1: 网格搜索GridSearchCV()
    网格搜索的思想非常简单,比如你有2个超参数需要去选择,那你就把所有的超参数选择列出来分别做排列组合。
    举个例子:
    λ = 0.01 , 0.1 , 1.0 \lambda = 0.01,0.1,1.0 λ=0.01,0.1,1.0

    α = 0.01 , 0.1 , 1.0 \alpha = 0.01,0.1,1.0 α=0.01,0.1,1.0
    可以做一个排列组合,即:
    { [ 0.01 , 0.01 ] , [ 0.01 , 0.1 ] , [ 0.01 , 1 ] , [ 0.1 , 0.01 ] , [ 0.1 , 0.1 ] , [ 0.1 , 1.0 ] , [ 1 , 0.01 ] , [ 1 , 0.1 ] , [ 1 , 1 ] } \{[0.01,0.01],[0.01,0.1],[0.01,1],[0.1,0.01],[0.1,0.1],[0.1,1.0],[1,0.01],[1,0.1],[1,1]\} {[0.01,0.01],[0.01,0.1],[0.01,1],[0.1,0.01],[0.1,0.1],[0.1,1.0],[1,0.01],[1,0.1],[1,1]}
    然后针对每组超参数分别建立一个模型,然后选择测试误差最小的那组超参数。换句话说,我们需要从超参数空间中寻找最优的超参数,很像一个网格中找到一个最优的节点,因此叫网格搜索。

  • 方法2:随机搜索RandomizedSearchCV()
    网格搜索相当于暴力地从参数空间中每个都尝试一遍,然后选择最优的那组参数,这样的方法显然是不够高效的,因为随着参数类别个数的增加,需要尝试的次数呈指数级增长。有没有一种更加高效的调优方式呢?那就是使用随机搜索的方式,这种方式不仅仅高效,而且实验证明,随机搜索法结果比稀疏化网格法稍好(有时候也会极差,需要权衡)。参数的随机搜索中的每个参数都是从可能的参数值的分布中采样的。与网格搜索相比,这有两个主要优点:

    • 可以独立于参数数量和可能的值来选择计算成本。
    • 添加不影响性能的参数不会降低效率。

4 看几个具体的例子

# 我们先来对未调参的SVR进行评价: 
from sklearn.svm import SVR     # 引入SVR类
from sklearn.pipeline import make_pipeline   # 引入管道简化学习流程
from sklearn.preprocessing import StandardScaler # 由于SVR基于距离计算,引入对数据进行标准化的类
from sklearn.model_selection import GridSearchCV  # 引入网格搜索调优
from sklearn.model_selection import cross_val_score # 引入K折交叉验证
from sklearn import datasets


boston = datasets.load_boston()     # 返回一个类似于字典的类
X = boston.data
y = boston.target
features = boston.feature_names
pipe_SVR = make_pipeline(StandardScaler(), SVR())
score1 = cross_val_score(estimator=pipe_SVR, X = X,
                                             y = y,
                                             scoring = 'r2',
                                             cv = 10)       # 10折交叉验证
print("CV accuracy: %.3f +/- %.3f" % ((np.mean(score1)),np.std(score1)))

结果:CV accuracy: 0.187 +/- 0.649

# 下面我们使用网格搜索来对SVR调参:
from sklearn.pipeline import Pipeline
pipe_svr = Pipeline([("StandardScaler",StandardScaler()),
                                                         ("svr",SVR())])
param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]
param_grid = [{"svr__C":param_range,"svr__kernel":["linear"]},  # 注意__是指两个下划线,一个下划线会报错的
                            {"svr__C":param_range,"svr__gamma":param_range,"svr__kernel":["rbf"]}]
gs = GridSearchCV(estimator=pipe_svr,
                                                     param_grid = param_grid,
                                                     scoring = 'r2',
                                                      cv = 10)       # 10折交叉验证
gs = gs.fit(X,y)
print("网格搜索最优得分:",gs.best_score_)
print("网格搜索最优参数组合:\n",gs.best_params_)

结果:网格搜索最优得分:0.6081303070817127
网格搜索最优参数组合:{‘svr__C’: 1000.0, ‘svr__gamma’: 0.001, ‘svr__kernel’: ‘rbf’}

# 下面我们使用随机搜索来对SVR调参:
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform  # 引入均匀分布设置参数
pipe_svr = Pipeline([("StandardScaler",StandardScaler()),
                                                         ("svr",SVR())])
distributions = dict(svr__C=uniform(loc=1.0, scale=4),    # 构建连续参数的分布
                     svr__kernel=["linear","rbf"],                                   # 离散参数的集合
                    svr__gamma=uniform(loc=0, scale=4))

rs = RandomizedSearchCV(estimator=pipe_svr,
                                                     param_distributions = distributions,
                                                     scoring = 'r2',
                                                      cv = 10)       # 10折交叉验证
rs = rs.fit(X,y)
print("随机搜索最优得分:",rs.best_score_)
print("随机搜索最优参数组合:\n",rs.best_params_)

结果:随机搜索最优得分: 0.3046244976868293
随机搜索最优参数组合:{‘svr__C’: 1.040579963881545, ‘svr__gamma’: 1.008649319233331, ‘svr__kernel’: ‘linear’}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值