什么是卷积 卷积有什么用

很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。

  先说"卷积有什么用"这个问题。(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的。我大吼一声,把他拖出去枪毙!)

  讲一个故事:

  张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。

  然后,经理让张三测试当[Task1:单个有限长信号,简单的,有明确的数学表达式,周期信号]输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。张三照做了,花了一个波形图。

  "很好!"经理说。然后经理给了张三一叠A4纸: "[Task2:数千种有限长信号,有明确数学表达式,周期信号]这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。你分别测试以下我们产品的输出波形是什么吧!"

  这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"

  于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。

  上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!"

  张三照办了,"然后呢?"

  上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。"

  张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。这个方法叫什么名字呢?"

  上帝说:"叫卷积!"

  从此,张三的工作轻松多了。每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!

  张三愉快地工作着,直到有一天,平静的生活被打破。

  经理拿来了一个小的电子设备,接到示波器上面,对张三说: "[task3:无限长信号,没有明确的数学表达式,周期信号]看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。张三,你来测试以下,连到我们的设备上,会产生什么输出波形!"

  张三摆摆手:"输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?"

  经理怒了:"反正你给我搞定,否则炒鱿鱼!"

  张三心想:"这次输入信号连公式都给出出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办呢?"

  及时地,上帝又出现了:"把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来"

  "宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。"

  "我给你一个数学函数f,时间域无限的输入信号在f域有限的。时间域波形混乱的输入信号在f域是整齐的容易看清楚的。这样你就可以计算了"

  "同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看"

  "计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!"

  张三谢过了上帝,保住了他的工作。后来他知道了,f域的变换有一个名字,叫做傅利叶,什么什么... ...

  再后来,[task4,输出信号是无限长]公司开发了一种新的电子产品,输出信号是无限时间长度的。这次,张三开始学拉普拉斯了......

  后记:

  不是我们学的不好,是因为教材不好,老师讲的也不好。

  很欣赏Google的面试题: 用3句话像老太太讲清楚什么是数据库。这样的命题非常好,因为没有深入的理解一个命题,没有仔细的思考一个东西的设计哲学,我们就会陷入细节的泥沼: 背公式,数学推导,积分,做题;而没有时间来回答"为什么要这样"。做大学老师的做不到"把厚书读薄"这一点,讲不出哲学层面的道理,一味背书和翻讲ppt,做着枯燥的数学证明,然后责怪"现在的学生一代不如一代",有什么意义吗?

  Littlegrass评论:我感觉本博客写的相当的好,对卷积的理解相当的到位,特此转载!我之前了解点信号处理方面的内容,信号处理书上,都是一个模式的讲解卷积,一个模式倒是无所责备的,可是“它”这个模式使人理解起来很痛苦,导致无数的侠客们都是记公式,匆匆忙忙修炼下,就出关了!呵呵,忘了讲这个模式了,这个模式就是:首先给出dirac函数的定义(这个函数的定义,不得不说是个伟大的创造),dirac函数具有采样性质,然后任意的函数都可以通过dirac函数与本身函数的一个特殊的表达来表示,这个表示就叫做卷积,从直观上来说,这个表达就是一个函数可以理解为无穷个点组成(采样的特点了)。有个这个定义后,我们研究任意信号函数经过一个线性时不变系统后的输出函数时,不需对每个函数都研究一次它的输出信号是什么,就只要研究dirac函数(脉冲)的输出信号是什么(这个输出信号叫脉冲响应),这个脉冲响应就刻画了线性时不变系统的内在性质了,然后求任意信号的输出信号,就只要和这个脉冲响应作卷积就可以了!

  也许讲到这,可能还没明白在说什么。 呵呵,那就看看我转载的这篇诙谐的博主是怎么理解的吧。他通过故事的形式给我们展开的。

  首先给出一个简单的信号,正弦信号,求经过一个线性时不变系统的输出信号是什么? 这时候,我们做下试验就行了。

  接下来,我们再慢慢深化,如果给你很多信号,成千上万的信号,叫你求它们的输出信号。你不会一个一个去做实验吧?呵呵。那你得想办法呀。我们该怎么做呢?我们当然就是研究这系统的性质,信号传递过程的内在规律了。我们首先,研究下dirac信号(脉冲信号)的输出信号(脉冲响应),这个响应就刻画了系统的性质,接着求任意信号的输出信号,通过dirac函数的采样性质,任意的信号都可以看成无穷点组成,每个点通过dirac函数的采样得到,好了,把这个叙述整合下就是,任意的信号都可以通过无穷个的脉冲序列线性叠加得到,从函数逼近的角度可以这么理解,把这些无穷个dirac函数看成函数空间的一个基(也许说集不准确,可以把它理解成时髦的词语,原子),线性逼近的系数就是该函数在该点的函数值。好了,对输入信号有了这个理解后(能够有这个理解,dirac函数功不可没),我们求它的输出信号,由于系统是线性的,时不变的,所以我们只要求出不同时刻脉冲响应就行了,然后就是这脉冲响应叠加起来,就是我们要的输出信号。因此,你给我成千上万的信号,我只要求出不同时刻的脉冲响应,就可以求出输出函数信号了。

  再往下发展,如果我给你的输入信号相当的复杂,没有一个明确的数学表达式,而且是无限长的周期信号.这是我们怎么求他的输出信号呢?注意这里输入信号的数学表达式不能写出来,但是采样点是知道的。这时候,我们可以通过一个叫做傅里叶变换的家伙来解决这个问题。傅里叶变换(其实也是种卷积)告诉我们什么一件事呢?可以从来个角度来理解,一是从合成的角度(重构的角度),我们知道周期的信号可以通过基本的正余炫函数的叠加来表达,这个叠加的系数就是我们要找的傅里叶变换的结果;另一个角度是分析的角度(分解的角度),那就是我们求信号与不同频率成分的相关性(内积),或者说不同频率成分刻画这个信号的能力的大小。有了这个傅里叶变化后,就可以把问题转化到频域来处理,时域的传积对应于频域的乘积,就是对乘上脉冲响应的傅里叶变换(叫做转移函数),然后通过逆变化得出的就是输入信号对应的输出信号。

  最后当输入输出信号是无限长时,我们得借助于拉普拉斯变换来实现了。

  总之,这篇博客谈到了信号的通过一个线性时不变系统的输出信号问题,当时域的信号是周期的,有限长的,有明确数学表达式的,我们可以通过卷积公式来计算输出信号;当时域的信号是周期的,无限长的,波形复杂(没有明确的数学表达式),我们可以通过傅里叶变换将问题转换到频域来处理。

  remark: 1 我们对信号进行处理的关键是设计滤波器,所谓的滤波器大部分是卷积操作;(滤波的本质是处理信号,过滤信号,得到我们想要的信号)

  2 当信号比较复杂时,我们借助于变换的方法,将信号转换到另一个空间来求解,然后在另一个空间设计滤波器,再转回来。(变换域滤波,常见的变换是,傅里叶变化,小波变换,超小波等)————这里涉及到信号的变换了,变换有两种理解,从分解角度和合成角度,本质上是如何的表示信号)(表示+滤波)

  3,涉及到如何表示信号这个话题,我们的自然的想法就是如何自适应的表示信号,就是不仅要求表示信号(表示是从数学上说,这是相等了,并不包含丰富的结构信息),而且能够体现出信号的结构。目前比较火的思想是:冗余+稀疏性。冗余的目的是,希望我的字典库很丰富,有足够的结够信息,具有自适应表达的潜力,这是为了自适应的表示考虑的;稀疏性,是为了滤波考虑的,就是希望能够得到我们想要的输出信号,为什么要稀疏性呢,因为大量的实验证明对自然信号,稀疏性(近似稀疏的,有大量小的系数)是具有一定的普适性。当然我这是从合成的角度来理解的,如果按照传统的信号处理的观念,从分析的角度(分解),似乎有点麻烦。从这个合成角度理解,我们从优化角度来建模就很自然了。

  4,如果讲到比3深点的话题就是,压缩感知(一种新的信号处理方式——相对于传统的方式)。首先我们回顾下传统的信号处理流程. 按照香农采样定律采样——量化——变换(涉及到表示了)——压缩——编码——传输——解码——反变换——(插值)

  由于传统的信号处理流程,有个弊端就是,就是采样和压缩是分离的,这不是问题的本质,关键是我们花了很多的气力采了很多的数据,但是通过压缩,我们要的数据很少,也就是说我们我们的采样里面包含了好多冗余的信息(相关的信息),我们能不能就采样出比较少的比较有代表性的点(信息损失很少),就是说在信息损失可以忽略的情况下,我们如何涉及具有压缩性的采样,然后通过编码传输出这少量的比较有代表性的点,然后解码,然后重构,然后插值(可能要)。流程为:

  压缩采样(信息感知)——编码——传输——解码——重构——插值(可能要)

  从这个简短叙述过程可知,我们要研究的问题是,如何的进行采样(采样理论,本质上体现为如何设计感知矩阵),如何重构,如何信号的稀疏表示(压缩感知理论建立的前提之一就是假设信号具有稀疏性),研究如何将信号稀疏表示可能拓展我们处理信号的范围。

  这一切用到了信号的一个重要的先验信息,那就是稀疏性,那问题自然来了,信号除了稀疏性,还要其他的性质吗?如何发现了,呵呵,你懂的!

  5 脉冲响应或者离散是卷积前面的那个矩阵:体现了输出信号的相关性的,输出信号的相关性体现了系统的性质!
### 回答1: 可变形卷积(deformable convolution)是一种在特征图上进行卷积操作的卷积方式,其本质上还是卷积。它通过引入可变形卷积核来适应目标物体的形状变化,从而提高模型的准确率。 可变形卷积的作用对象是特征图而非原始图像,因为在卷积神经网络中,特征图是通过多层卷积和池化操作从原始图像中提取出来的,具有更好的抽象能力和语义信息。作用在特征图上的可变形卷积可以适应目标物体的形状变化,提高模型的感受野和准确率。 因此,可变形卷积并不是直接作用在原始图像上的,而是作用在特征图上的。在一些需要考虑目标物体形状变化的任务中,如目标检测和语义分割,采用可变形卷积可以有效提升模型的准确性。 ### 回答2: 可变形卷积是一种基于可变形滤波的深度学习方法,它主要作用在特征图上。在传统的卷积操作中,卷积核的权重是固定的,无法适应图像中非刚性变形的情况。而可变形卷积通过学习额外的偏移量,可以动态调整卷积核的采样位置,从而对图像中的非刚性变形进行建模。 可变形卷积的主要优势在于它可以捕捉更精细的特征信息,从而提升模型的性能。通过对图像进行可变形卷积操作,可以更好地应对图像中存在的宽度、高度和角度等非刚性变形。例如,当处理包含倾斜、拉伸、翻转等变形的图像时,传统卷积可能无法准确地捕捉到这些变形,而可变形卷积可以根据具体情况灵活地调整采样位置,从而更好地适应这些变形。 然而,可变形卷积作用在图像上可能效果不明显。这是因为可变形卷积的特点是根据特征图的内容来动态调整采样位置,而对整个图像应用可变形卷积需要较大的计算量。对于一些简单的图像,其本身可能不具备太多非刚性变形,因此应用可变形卷积可能并不会带来明显的效果提升。相对应的,对于包含大量非刚性变形的复杂图像,可变形卷积能够更好地捕捉到这些变形,因此效果会更为显著。 综上所述,可变形卷积主要作用在特征图上,可以捕捉到图像中的非刚性变形,从而提升模型性能。但对于简单的图像,作用在整个图像上可能效果不明显,而对于复杂图像的处理则能更好地发挥其优势。 ### 回答3: 可变形卷积是一种用于处理图像的卷积操作,它可以根据输入图像中的目标位置对卷积核进行形变,以更好地适应目标目标的形状变化。它的作用对象是特征图,而不是原始图像。 可变形卷积的有效性在于其对特征图进行形变,从而能够更好地捕捉目标的形状特征。相对于传统的卷积操作,可变形卷积在处理具有大形变目标的图像时具有更强的适应性。例如,在物体检测任务中,可变形卷积能够通过学习特征图中物体的变形情况,有效地提高目标的定位准确性和检测召回率。 作用在特征图上的可变形卷积能够更好地应对目标的形状变化,但其对原始图像的处理效果可能有限。因为可变形卷积主要侧重于调整卷积核的空间采样位置,而不是对原始图像进行形变。所以,如果想要在原始图像上实现形变效果,可变形卷积通常需要与其他图像处理技术相结合,才能更好地发挥作用。 综上所述,可变形卷积的作用对象是特征图,通过形变卷积核以适应目标形状的变化,以提高目标检测和定位任务的性能。对于图像上的形变,可变形卷积的效果可能有限,因此可能需要结合其他图像处理方法来实现更好的形变效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值