GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案

本文介绍了在24GB显存限制下,作者对Qwen大模型(尤其是Qwen-7B-Chat和Qwen-14B-Chat-Int4)在CUDA12.24G环境下的部署和性能测试,包括遇到的问题和解决方案,以及资源需求和部署步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPT实战系列-实战Qwen在Cuda12+24G部署方案

ChatGLM4进行新闻发布,但还没有开源更新,在此之际,实战部署测试Qwen大模型。目前Qwen的口碑貌似还不错,测试显卡内存24G,毕竟有限,排除了Qwen14非量化方案Qwen-14B-Chat,只有 Qwen-7B-Chat,Qwen-7B-Chat-Int4,Qwen-14B-Chat-Int4 模型可用。测试过程中Qwen-7B-Chat出现显存bug,只能都用Int4方案。


LLM大模型:

GPT实战系列-探究GPT等大模型的文本生成

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练



通义千问-7B(Qwen-7B)是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。

一、Qwen 模型

测试显卡内存24G,毕竟有限,排除了Qwen14非量化方案Qwen-14B-Chat,只有 Qwen-7B-Chat,Qwen-7B-Chat-Int4,Qwen-14B-Chat-Int4 模型可用。测试过程中Qwen-7B-Chat出现显存bug,只能都用Int4方案。

模型类型 效果 备注
Qwen-7B-Chat Failed 显存管理问题
Qwen-7B-Chat-Int4 Pass
Qwen-14B-Chat Failed
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex_StarSky

你的鼓励是创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值