《不等式证明选讲》笔记

本文内容是《不等式证明选讲》一书的笔记

排序不等式

对于两组数 a 1 , a 2 , a 3 . . . a n 和 b 1 , b 2 , b 3 . . . , b n a_1, a_2,a_3...a_n和b_1,b_2,b_3...,b_n a1,a2,a3...anb1,b2,b3...,bn,且 a 1 ≤ a 2 ≤ a 3 ≤ . . . ≤ a n a_1\le a_2 \le a_3 \le...\le a_n a1a2a3...an b 1 ≤ b 2 ≤ b 3 ≤ . . . ≤ b n b_1\le b_2 \le b_3 \le...\le b_n b1b2b3...bn,设 c 1 , c 2 . . . c n c_1, c_2...c_n c1,c2...cn b 1 , b 2 , b 3 . . . , b n b_1,b_2,b_3...,b_n b1,b2,b3...,bn的任一排列,

a 1 b 1 + a 2 b 2 + . . . + a n b n a_1b_1+a_2b_2+...+a_nb_n a1b1+a2b2+...+anbn为正序和, a 1 c 1 + a 2 c 2 + . . . + a n c n a_1c_1+a_2c_2+...+a_nc_n a1c1+a2c2+...+ancn为乱序和, a 1 b n + a 2 b n − 1 + . . . + a n b 1 a_1b_n+a_2b_{n-1}+...+a_nb_1 a1bn+a2bn1+...+anb1为反序和。

a 1 b 1 + a 2 b 2 + . . . + a n b n ≥ a 1 c 1 + a 2 c 2 + . . . + a n c n ≥ a 1 b n + a 2 b n − 1 + . . . + a n b 1 a_1b_1+a_2b_2+...+a_nb_n\ge a_1c_1+a_2c_2+...+a_nc_n\ge a_1b_n+a_2b_{n-1}+...+a_nb_1 a1b1+a2b2+...+anbna1c1+a2c2+...+ancna1bn+a2bn1+...+anb1
a 1 = a 2 = . . . = a n 或 b 1 = b 2 = . . . = b n a_1=a_2=...=a_n 或 b_1=b_2=...=b_n a1=a2=...=anb1=b2=...=bn(反序和 = 正序和)时等号成立

证明:
设 i < j, 且 c i ≤ c j c_i\le c_j cicj
此时
\qquad s 1 = a 1 c 1 + a 2 c 2 + . . . + a i c i + a j c j + . . . + a n c n s_1= a_1c_1+a_2c_2+...+a_ic_i+a_jc_j+...+a_nc_n s1=a1c1+a2c2+...+aici+ajcj+...+ancn
\qquad s 2 = a 1 c 1 + a 2 c 2 + . . . + a i c j + a j c i + . . . + a n c n s_2= a_1c_1+a_2c_2+...+a_ic_j+a_jc_i+...+a_nc_n s2=a1c1+a2c2+...+aicj+ajci+...+ancn
s 2 s_2 s2仅是在 s 1 s_1 s1的基础上将 c i 与 c j c_i 与 c_j cicj互换了位置,做差比较得:
\qquad s 2 − s 1 = a i c i + a j c j − a i c j + a j c i = ( a j − a i ) ⋅ ( c i − c j ) ≤ 0 s_2-s_1=a_ic_i+a_jc_j-a_ic_j+a_jc_i=(a_j-a_i)\cdot(ci-cj)\le0 s2s1=aici+ajcjaicj+ajci=(ajai)(cicj)0
这说明在一切和数中{ c n c_n cn}按从小到大排列时的和数是最大的。
再证明当 a 1 = a 2 = . . . = a n 或 b 1 = b 2 = . . . = b n a_1=a_2=...=a_n 或 b_1=b_2=...=b_n a1=a2=...=anb1=b2=...=bn时等号成立。
不妨设 a 1 = a 2 = . . . = a n = A a_1=a_2=...=a_n=A a1=a2=...=an=A则不论{ c n c_n cn}顺序如何,和数均为 A ⋅ ( b 1 + b 2 + . . . + b n ) A\cdot(b_1+b_2+...+b_n) A(b1+b2+...+bn),反之若 a 1 , a 2 , a 3 . . . a n a_1, a_2,a_3...a_n a1,a2,a3...an不全相等, b 1 , b 2 , b 3 . . . , b n b_1,b_2,b_3...,b_n b1,b2,b3...,bn也不全相等,不妨设 a 1 < a 2 , i < j a_1<a_2, i<j a1<a2,i<j c i < c j c_i<c_j ci<cj,并将 c i , c j c_i, c_j ci,cj置于{ c n c_n cn}的前二位。

即设
s = ( c i , c j , c 3 , c 4 , . . . , c n c_i, c_j, c_3, c_4, ..., c_n ci,cj,c3,c4,...,cn)
s’’ =( c j , c i , c 3 , c 4 , . . . , c n c_j, c_i, c_3, c_4, ..., c_n cj,ci,c3,c4,...,cn)
s 1 ′ = a 1 c i + a 2 c j + a 3 c 3 + . . . + a n c n s_1^{'}=a_1c_i+a_2c_j+a_3c_3+...+a_nc_n s1=a1ci+a2cj+a3c3+...+ancn
s 2 ′ = a 1 c j + a 2 c i + a 3 c 3 + . . . + a n c n s_2^{'}=a_1c_j+a_2c_i+a_3c_3+...+a_nc_n s2=a1cj+a2ci+a3c3+...+ancn
做差比较得: s 1 ′ − s 2 ′ = ( c j − c i ) ⋅ ( a 2 − a 1 ) > 0 s_1^{'}-s_2^{'}=(c_j-c_i)\cdot(a_2-a_1)>0 s1s2=(cjci)(a2a1)>0,即 s 1 ′ > s 2 ′ s_1^{'}>s_2^{'} s1>s2
即当且仅当 a 1 = a 2 = . . . = a n 或 b 1 = b 2 = . . . = b n a_1=a_2=...=a_n 或 b_1=b_2=...=b_n a1=a2=...=anb1=b2=...=bn(反序和 = 正序和)时等号成立。

平均值不等式

首先我们已知有代数平均值 1 n ⋅ ∑ i = 1 n x i \frac{1}{n}\cdot \sum\limits_{i=1}^nx_i n1i=1nxi,几何平均值 ∏ i = 1 n n a i \sqrt[n]{\prod\limits_{i=1}^n}a_i ni=1n ai,调和平均值 n ∑ i = 1 n 1 x i \frac{n}{\sum\limits_{i=1}^n\frac{1}{x_i}} i=1nxi1n,三者都可称作“平均值”,可它们又有怎样的区别,即该在何种条件下使用呢?

代数平均值的由来

统计中经常要考虑使方差最小,即面对一大组数据 x i x_i xi要如何选取平均值 x ‾ \overline{x} x,使得 ∑ i = 1 n ( x i − x ‾ ) 2 \sum\limits_{i=1}^n(x_i-\overline{x})^2 i=1n(xix)2最小(也可认为是误差或者偏差达到最小)。
可取 f ( x ) = ∑ i = 1 n ( x i − x ‾ ) 2 = n x ‾ 2 − 2 ( ∑ i = 1 n x i ) ⋅ x + ∑ i = 1 n x i 2 f(x) = \sum\limits_{i=1}^n(x_i-\overline{x})^2=n\overline{x}^2-2(\sum\limits_{i=1}^nx_i)\cdot x +\sum\limits_{i=1}^nx_i^2 f(x)=i=1n(xix)2=nx22(i=1nxi)x+i=1nxi2,这是一个二次函数。
则当X取对称轴位置 x = − b 2 a = 1 n ⋅ ∑ i = 1 n x i x=-\frac{b}{2a}=\frac{1}{n}\cdot \sum\limits_{i=1}^nx_i x=2ab=n1i=1nxi的时候,原函数取到最小值。这便是代数平均值的由来。

证明: 1 n ⋅ ∑ i = 1 n x i \frac{1}{n}\cdot \sum\limits_{i=1}^nx_i n1i=1nxi ≥ \ge ∏ i = 1 n n a i \sqrt[n]{\prod\limits_{i=1}^n}a_i ni=1n ai
这是齐次不等式,所以可以用标准化方法。
首先证明当 a 1 ⋅ a 2 . . . a n a_1\cdot a_2...a_n a1a2...an时上式成立。

x 1 = 1 , x 2 = 1 a 1 , x 3 = 1 a 1 a 2 . . . x n = 1 a 1 a 2 . . . a n − 1 x_1=1, x_2=\frac{1}{a_1}, x_3=\frac{1}{a_1a_2}...x_n=\frac{1}{a_1a_2...a_{n-1}} x1=1,x2=a11,x3=a1a21...xn=a1a2...an11
y 1 = 1 / x 1 , y 2 = 1 / x 2 . . . y n = 1 / x n y_1=1/x_1, y_2=1/x_2...y_n=1/x_n y1=1/x1,y2=1/x2...yn=1/xn
b 1 , b 2 . . . b n b_1,b_2...b_n b1,b2...bn x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn的一个排列且满足
0 ≤ b 1 ≤ b 2 ≤ . . . ≤ b n 0\le b_1\le b_2\le...\le b_n 0b1b2...bn, 则 1 b 1 ≥ 1 b 2 ≥ . . . ≥ 1 b n ≥ 0 \frac{1}{b_1}\ge\frac{1}{b_2}\ge...\ge\frac{1}{b_n}\ge0 b11b21...bn10,由反序和 ≤ \le 乱序和知
b 1 ⋅ 1 b 1 + b 2 ⋅ 1 b 2 + . . . + b n ⋅ 1 b n ≤ x 1 y 2 + x 2 y 3 + , , , + x n − 1 y n + x n y 1 b_1\cdot\frac{1}{b_1}+b_2\cdot\frac{1}{b_2}+...+b_n\cdot\frac{1}{b_n}\le x_1y_2+x_2y_3+,,,+x_{n-1}y_n+x_ny_1 b1b11+b2b21+...+bnbn1x1y2+x2y3+,,,+xn1yn+xny1,就是说 n ≤ a 1 + a 2 + . . . + a n − 1 + 1 a 1 a 2 . . . a n − 1 n\le a_1+a_2+...+a_{n-1}+\frac{1}{a_1a_2...a_{n-1}} na1+a2+...+an1+a1a2...an11
又因为 1 a 1 a 2 . . . a n − 1 = a n \frac{1}{a_1a_2...a_{n-1}}=a_n a1a2...an11=an,所以 1 n ⋅ ∑ i = 1 n x i ≥ 1 \frac{1}{n}\cdot \sum\limits_{i=1}^nx_i\ge1 n1i=1nxi1符合上式,等号成立条件为: x 1 = x 2 = . . . = x n = 1    ⟺    a 1 = a 2 = . . . = a n = 1 x_1=x_2=...=x_n=1\iff a_1=a_2=...=a_n=1 x1=x2=...=xn=1a1=a2=...=an=1
下面证明一般情况:
∏ i = 1 n n a i = G \sqrt[n]{\prod\limits_{i=1}^n}a_i=G ni=1n ai=G
所以 a 1 G ⋅ a 2 G ⋅ a 3 G ⋅ . . . a n G ⋅ = 1 \frac{a_1}{G}\cdot\frac{a_2}{G}\cdot\frac{a_3}{G}\cdot...\frac{a_n}{G}\cdot=1 Ga1Ga2Ga3...Gan=1,由上述证明知 1 n ⋅ ( a 1 G + a 2 G + . . . + a n G ) ≥ 1 \frac{1}{n}\cdot(\frac{a_1}{G}+\frac{a_2}{G}+...+\frac{a_n}{G})\ge1 n1(Ga1+Ga2+...+Gan)1
所以
1 n ⋅ ∑ i = 1 n x i \frac{1}{n}\cdot \sum\limits_{i=1}^nx_i n1i=1nxi ≥ \ge ∏ i = 1 n n a i \sqrt[n]{\prod\limits_{i=1}^n}a_i ni=1n ai证毕!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值