华为OD机试 Python【5G基站最小连接成本计算】

题目

现需要在某城市进行5G网络建设,已经选取N个地点设置5G基站,编号固定为1到N,接下来需要各个基站之间使用光纤进行连接以确保基站能互联互通,不同基站之间假设光纤的成本各不相同,且有些节点之间已经存在光纤相连。

请你设计算法,计算出能联通这些基站的最小成本是多少。

注意:基站的联通具有传递性,比如基站A与基站B架设了光纤,基站B与基站C也架设了光纤,则基站A与基站C视为可以互相联通。

输入描述
第一行输入表示基站的个数N,其中:0 < N ≤ 20
第二行输入表示具备光纤直连条件的基站对的数目M,其中:0 < M < N * (N - 1) / 2
从第三行开始连续输入M行数据,格式为X Y Z P
其中:
X,Y 表示基站的编号
0 < X ≤ N
0 < Y ≤ N
X ≠ Y
Z 表示在 X、Y之间架设光纤的成本
0 < Z < 100
P 表示是否已存在光纤连接,0 表示未连接,1表示已连接

输出描述
如果给定条件,可以建设成功互联互通的5G网络,则输出最小的建设成本
如果给定条件,

### 华为OD中的Python编程题及解法 #### 九宫格问题解析 在华为OD中,有一类典型的题目是关于九宫格的操作。这类题目通常涉及在一个3×3的矩阵内移动字符或数字来达到特定的目标状态。 对于此类问题的一个实例,在给定初始状态下通过一系列合法操作转换为目标状态的过程中,可以采用广度优先搜索算法(BFS)求解最短路径[^2]。下面是一个简化版的例子: ```python from collections import deque def bfs(start, target): queue = deque([(start, "")]) visited = set([start]) while queue: state, path = queue.popleft() if state == target: return path empty_index = state.index('0') x, y = divmod(empty_index, 3) for dx, dy in ((0,-1), (-1,0), (1,0), (0,1)): nx, ny = x + dx, y + dy if 0 <= nx < 3 and 0 <= ny < 3: new_state = list(state) n_pos = nx * 3 + ny # Swap positions of '0' with adjacent number. new_state[empty_index], new_state[n_pos] = new_state[n_pos], new_state[empty_index] str_new_state = ''.join(new_state) if str_new_state not in visited: visited.add(str_new_state) queue.append((str_new_state, path + str(n_pos))) # Example usage print(bfs("867254301", "123804765")) ``` 此代码片段展示了如何利用BFS解决从起始布局到目标布局之间的最小步数计算问题。这里假设输入字符串表示的是一个扁平化后的二维数组形式的状态,其中`'0'`代表空白位置。 #### 准备建议 针对华为OD,除了熟悉常见的数据结构和算法外,还应该注重练习实际编写程序的能力以及理解业务场景下的需求分析技巧。多做模拟测并总结经验教训有助于提高应水平[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AlgorithmHero

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值