深度学习(十二) Explainable ML


前言

前面我们曾经多次提出了深度学习模型黑箱性这一特点,所以这篇文章将会给大家讨论一下机器学习的可解释性。

一、为什么需要Explainable ML?

  1. 我们不仅需要机器结果的精确度,还需要进行模型诊断,看机器学习得怎么样。但是如果模型的内部我们一无所知,我们将无法清楚机器学习的真实情况,只得到一个分数,并不能有很强的说服能力

  2. 为了满足使用者的要求,但事实上如果把整个复杂的机器学习内部都弄清楚,这是很困难的并且意义不大的,一般我们只是想找到对整个机器学习过程一个简单的解释即可以认定该模型具有可解释性。

  3. 当模型出现问题的时候,我们需要快速调整模型,那就必须要知道模型的问题出现在哪里,可解释性的模型就显得极为重要。
    在这里插入图片描述

  4. 简单的模型一般都具有很强的可解释性,但是一般效果都不好,比如说线性模型,所以这种模型一般我们很少采用。
    在这里插入图片描述

事实上,决策树模型同时具有很强的可解释性能力和复杂的结构,不过由于单一决策树的模型还是比较简单,我们就要引入多棵树,也就是我们常说的随机深林模型。有一个很大的缺点:计算量太大

二、Local Explanation(局部可解释性)

1.什么是局部可解释性?

所谓的局部可解释性,就是当我们输入一个对象 x,其中有多个component,我们想要知道哪个component 对于完成模型任务起到关键作用。换句话说,我们需要找出最重要的feature,这个就是我们的目标。
在这里插入图片描述

2.移除组成要素(遮挡法)

我们以图像为例,我们只需要遮挡住图像的一个部分,然后对图片重新进行预测,然后得到一个根据权重大小绘制出来的颜色图,即可以判断哪个部分是们重要的feature。
在这里插入图片描述
很明显我们可以看到蓝色部分是我们想要找到的区域,这个区域就是影响判断的重要组成部分。

3.改变组成要素(基于Gradient)

这种方法需要采用Saliency Map(显著图)进行可视化,它的核心思想是通过改变我们的组成要素然后观察输出的变化,尽量令两者的比值越大,这样画出的显著图就越明亮,就能找到真正的核心组成部分
在这里插入图片描述
但这种方法会有一个很大的问题就是我们的梯度饱和:当一个组成特征的显著特点过大时,就会产生信息冗余,就是怎么变化,输出都不会改变了,那么梯度就会变为0,这样反而无法判断这一个显著特点过大的特征。
在这里插入图片描述
同时,这种方法禁不起被恶意攻击后的模型,当模型被恶意攻击后,将会融入噪声,这种噪声会产生奇怪的结果。

三、Global Explanation(全局可解释性)

1.什么是全局可解释性?

刚刚的局部可解释性是让输出找出影响最大的一个组成成分,而全局可解释性则将关注点放在了输入,我们需要知道最大概率输出的时候,反推回输入应该是一个什么样的东西。

2.如何实现全局可解释性?

  1. 以CNN为例,我们最后会得到一个y的输出,通过这个公式就能找到相应的输入。 X ∗ = arg ⁡ max ⁡ x ∑ i ∑ j a i j X^*=\arg \max_x \sum_i \sum_j a_{ij} X=argxmaxijaij
    在这里插入图片描述
  2. 但是我们发现这样形成的输入X很相似,人眼无法很好的识别,这种情况我们需要正则化,这样我们人眼就能很清晰地进行识别了。

在这里插入图片描述

四、LIME(Local Interpretable Model-Agnostic Explanations)

1.为什么要使用LIME?

  1. 虽然我们使用线性模型不能很好地实现深度学习的网络,但是我们可以使用线性模型去解释其中一个局部区域,这是因为线性模型计算量小,解释性强。
  2. LIME的局部保真度很好,在局部特征中能够很好地拟合复杂模型的效果
  3. 这里所指的是与复杂模型无关,换句话说无论多复杂的模型,像是SVM或神经网络,该解释器都可以工作。

2.LIME的算法步骤

input为x,output为y,都是一维的,表示Black Box中x和y的关系。

  1. 首先给出想要解释的point ,代入black box里面
  2. 选取point x附近的点 :将图像分割成一个个小块,作为单位进行分析,随机删除一些小块,构成不同的样本,然后输入到黑盒当中,得到识别出图片特征的可能性。
  3. 用线性模型对选取的点进行拟合
  4. 解释线性模型,也就解释了原来的NN 在这部分区域的行为

在这里插入图片描述

总结

由于本节内容比较简单,所以没有留下思维导图,这节内容虽然是科普类内容,但是对于我们深挖深度学习模型的背后还是有很大帮助的。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
李宏毅2020机器学习深度学习 P1. Machine Learning 2020_ Course Introduction P2. Rule of ML 2020 P3. Regression - Case Study P4. Basic Concept P5. Gradient Descent_1 P6. Gradient Descent_2 P7. Gradient Descent_3 P8. Optimization for Deep Learning 1_2 选学 P9. Optimization for Deep Learning 2_2 选学 P10. Classification_1 P11. Logistic Regression P12. Brief Introduction of Deep Learning P13. Backpropagation P14. Tips for Training DNN P15. Why Deep- P16. PyTorch Tutorial P17. Convolutional Neural Network P18. Graph Neural Network 1_2 选学 P19. Graph Neural Network 2_2 选学 P20. Recurrent Neural Network Part I P21. Recurrent Neural Network Part II P22. Unsupervised Learning - Word Embedding P23. Transformer P24. Semi-supervised P25. ELMO, BERT, GPT P26. Explainable ML 1_8 P27. Explainable ML 2_8 P28. Explainable ML 3_8 P29. Explainable ML 4_8 P30. Explainable ML 5_8 P31. Explainable ML 6_8 P32. Explainable ML 7_8 P33. Explainable ML 8_8 P34. More about Explainable AI 选学 P35. Attack ML Models 1_8 P36. Attack ML Models 2_8 P37. Attack ML Models 3_8 P38. Attack ML Models 4_8 P39. Attack ML Models 5_8 P40. Attack ML Models 6_8 P41. Attack ML Models 7_8 P42. Attack ML Models 8_8 P43. More about Adversarial Attack 1_2 选学 P44. More about Adversarial Attack 2_2 选学 P45. Network Compression 1_6 P46. Network Compression 2_6 P47. Network Compression 3_6 P48. Network Compression 4_6 P49. Network Compression 5_6 P50. Network Compression 6_6 P51. Network Compression 1_2 - Knowledge Distillation .flv P52. Network Compression 2_2 - Network Pruning 选学 P53. Conditional Generation by RNN & Attention P54. Pointer Network P55. Recursive P56. Transformer and its variant 选学 P57. Unsupervised Learning - Linear Methods P58. Unsupervised Learning - Neighbor Embedding P59. Unsupervised Learning - Auto-encoder P60. Unsupervised Learning - Deep Generative Model Part.flv P61. Unsupervised Learning - Deep Generative Model Part.flv P62. More about Auto-encoder 1_4 P63. More about Auto-encoder 2_4 P64. More about Auto-encoder 3_4 P65. More about Auto-encoder 4_4 P66. Self-supervised Learning 选学 P67. Anomaly Detection 1_7 P68. Anomaly Detection 2_7 P69. Anomaly Detection 3_7 P70. Anomaly Detection 4_7 P71. Anomaly Detection 5_7 P72. Anomaly Detection 6_7 P73. Anomaly Detection 7_7 P74. More about Anomaly Detection 选学 P75. Generative Adversarial Network1_10 P76. Generative Adversarial Network2_10 P77. Generative Adversarial Network3_10 P78. Generative Adversarial Network4_10 P79. Generative Adversarial Network5_10 P80. Generative Adversarial Network6_10 P81. Generative Adversarial Network7_10 P82. Generative Adversarial Network8_10 P83. Generative Adversarial Network9_10 P84. Generative Adversarial Network10_10 P85. SAGAN, BigGAN, SinGAN, GauGAN, GANILLA, NICE-GAN(选学.flv P86. Transfer Learning P87. More about Domain Adaptation 1_2 选学 P88. More about Domain Adaptation 2_2 选学 P89. Meta Learning – MAML 1_9 P90. Meta Learning – MAML 2_9 P91. Meta Learning – MAML 3_9 P92. Meta Learning – MAML 4_9 P93. Meta Learning – MAML 5_9 P94. Meta Learning – MAML 6_9 P95. Meta Learning – MAML 7_9 P96. Meta Learning – MAML 8_9 P97. Meta Learning – MAML 9_9 P98. More about Meta Learning 选学 P99. More about Meta Learning 选学 P100. Life Long Learning 1_7 P101. Life Long Learning 2_7 P102. Life Long Learning 3_7 P103. Life Long Learning 4_7 P104. Life Long Learning 5_7 P105. Life Long Learning 6_7 P106. Life Long Learning 7_7 P107. Deep Reinforcemen Learning3_1 P108. Deep Reinforcemen Learning3_2 P109. Deep Reinforcemen Learning3_3 P110. RL Advanced Version_1_Policy Gradient P111. RL Advanced Version_2_ Proximal Policy Optimizatio.flv P112. RL Advanced Version_3_Q-Learning P113. RL Advanced Version_4_Q-Learning Advanced Tips P114. RL Advanced Version_5_Q-Learning Continuous Action.flv P115. RL Advanced Version_6_Actor-Critic P116. RL Advanced Version_7_Sparse Reward P117. RL Advanced Version_8_Imitation Learning
本文依托于综述性文章,首先回顾了可解释性方法的主要分类以及可解释深度学习在医疗图像诊断领域中应用的主要方法。然后,结合三篇文章具体分析了可解释深度学习模型在医疗图像分析中的应用。作为一种领先的人工智能方法,深度学习应用于各种医学诊断任务都是非常有效的,在某些方面甚至超过了人类专家。其中,一些计算机视觉方面的最新技术已经应用于医学成像任务中,如阿尔茨海默病的分类、肺癌检测、视网膜疾病检测等。但是,这些方法都没有在医学领域中得以广泛推广,除了计算成本高、训练样本数据缺乏等因素外,深度学习方法本身的黑盒特性是阻碍其应用的主要原因。   尽管深度学习方法有着比较完备的数学统计原理,但对于给定任务的知识表征学习尚缺乏明确解释。深度学习的黑盒特性以及检查黑盒模型行为工具的缺乏影响了其在众多领域中的应用,比如医学领域以及金融领域、自动驾驶领域等。在这些领域中,所使用模型的可解释性和可靠性是影响最终用户信任的关键因素。由于深度学习模型不可解释,研究人员无法将模型中的神经元权重直接理解/解释为知识。   此外,一些文章的研究结果表明,无论是激活的幅度或选择性,还是对网络决策的影响,都不足以决定一个神经元对给定任务的重要性[2],即,现有的深度学习模型中的主要参数和结构都不能直接解释模型。因此,在医学、金融、自动驾驶等领域中深度学习方法尚未实现广泛的推广应用。可解释性是指当人们在了解或解决一件事情的过程中,能够获得所需要的足够的可以理解的信息。深度学习方法的可解释性则是指能够理解深度学习模型内部机制以及能够理解深度学习模型的结果。关于“可解释性”英文有两个对应的单词,分别是“Explainability”和“Interpretability”。这两个单词在文献中经常是互换使用的。一般来说,“Interpretability”主要是指将一个抽象概念(如输出类别)映射到一个域示例(DomainExample),而“Explainability”则是指能够生成一组域特征(DomainFeatures),例如图像的像素,这些特征有助于模型的输出决策。   本文聚焦的是医学影像学背景下深度学习模型的可解释性(Explainability)研究。可解释性在医学领域中是非常重要的。一个医疗诊断系统必须是透明的(transparent)、可理解的(understandable)、可解释的(explainable),以获得医生、监管者和病人的信任。理想情况下,它应该能够向所有相关方解释做出某个决定的完整逻辑。公平、可信地使用人工智能,是在现实世界中部署人工智能方法或模型的关键因素。   本文重点关注可解释深度学习方法在医疗图像诊断中的应用。由于医学图像自有的特点,构建用于医疗图像分析的可解释深度学习模型与其它领域中的应用是不同的。本文依托于综述性文章,首先回顾了可解释性方法的主要分类以及可解释深度学习在医疗图像诊断领域中应用的主要方法。然后,结合三篇文章具体分析了可解释深度学习模型在医疗图像分析中的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ali forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值