机器学习算法总结——logistic regression

定义

  • 解决二分类问题
  • y ^ = 1 1 + e − z \hat{y}=\frac{1}{1+e^{-z}} y^=1+ez1,此函数也成为Sigmoid函数,z = θ T X \theta^{T}X θTX

代价函数

  • L = − y l o g y ^ − ( 1 − y ) l o g ( 1 − y ^ ) L=-ylog\hat{y}-(1-y)log(1-\hat{y}) L=ylogy^(1y)log(1y^),y为实际值, y ^ \hat{y} y^为预测值
  • 损失转化为分段函数,即为 L = { − l o g ( y ^ ) , y = 1 − l o g ( 1 − y ^ ) , y = 0 L= \left\{\begin{matrix} -log(\hat{y}), y=1 \\ -log(1-\hat{y}),y=0 \end{matrix}\right. L={log(y^),y=1log(1y^),y=0

梯度下降求得最优解

  • θ j − α ∑ 1 m ( y ^ − y ) x j → θ j \theta _{j}-\alpha \sum_{1}^{m}(\hat{y}-y)x_{j}\rightarrow \theta _{j} θjα1m(y^y)xjθj
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值