题干:
可以用字符串表示一个学生的出勤记录,其中的每个字符用来标记当天的出勤情况(缺勤、迟到、到场)。记录中只含下面三种字符:
'A':Absent,缺勤
'L':Late,迟到
'P':Present,到场
如果学生能够 同时 满足下面两个条件,则可以获得出勤奖励:
按 总出勤 计,学生缺勤('A')严格 少于两天。
学生 不会 存在 连续 3 天或 连续 3 天以上的迟到('L')记录。
给你一个整数 n ,表示出勤记录的长度(次数)。请你返回记录长度为 n 时,可能获得出勤奖励的记录情况 数量 。答案可能很大,所以返回对 109 + 7 取余 的结果。
思路:
用一个二维数组表示不同的几种情况,其中:
dp[i][0] 第i天为L,且前i-1天没有A
dp[i][1] 第i天为L,且前i-1天有A
dp[i][2] 第i天为P,且前i-1天没有A
dp[i][3] 第i天为P,且前i-1天有A
dp[i][4] 第i天为A
源码:
int checkRecord(int n){
//用二维数组来表示前i天的情况
//dp[i][0] 第i天为L,且前i-1天没有A
//dp[i][1] 第i天为L,且前i-1天有A
//dp[i][2] 第i天为P,且前i-1天没有A
//dp[i][3] 第i天为P,且前i-1天有A
//dp[i][4] 第i天为A
if(n == 1) return 3; //总天数为1天的时候,三种情况都满足
int dp[n][5];
//已经有多少天积累成奖励
dp[0][0] = 1;
dp[0][1] = 0;
dp[0][2] = 1;
dp[0][3] = 0;
dp[0][4] = 1;
dp[1][0] = 2;
dp[1][1] = 1;
dp[1][2] = 2;
dp[1][3] = 1;
dp[1][4] = 2;
for(int i = 2;i < n;i++){
dp[i][0] = (dp[i-2][2] + dp[i-1][2]) % 1000000007; //前两天都为P,且之前没有A
dp[i][1] = ((dp[i-2][3] + dp[i-2][4]) % 1000000007 + dp[i-1][4]) % 1000000007; //前两天为P,之前出现过一次A
dp[i][2] = (dp[i-1][0] + dp[i-1][2]) % 1000000007; //前两天PL都可以,且之前不存在A
dp[i][3] = ((dp[i-1][1] + dp[i-1][3]) % 1000000007 + dp[i-1][4]) % 1000000007; //前i天只有一个A,且可能出现在前i天的任意一天
dp[i][4] = (dp[i-1][0] + dp[i-2][2]) % 1000000007; //前两天pl都可以,且之前不存在A
}
long long res = (long long)dp[n-1][0] + (long long)dp[n-1][1] + (long long)dp[n-1][2] + (long long)dp[n-1][3] + (long long)dp[n-1][4];
return res % 1000000007;
}
链接:https://leetcode-cn.com/problems/student-attendance-record-ii/