热分析TG-DTG-DTA-DSC介绍

热分析:1903年由Tammann提出,指用固定的速率加热或冷却物质,然后通过测量物质物理性质(如质量、温度、热焓、尺寸、机械、电学、磁学)研究物质物理变化(晶型转变、熔融、升华、吸附)和化学变化(脱水、分解、氧化、还原)的技术。我们常用到的热分析技术有热重法(TG)、微商热重(DTG)、热差分析(DTA)、差示扫描量热法(DSC)。

热分析的应用主要有:

1.物质成分分析:鉴别、相图研究

2.物质或材料稳定性分析:稳定性、抗氧化性

3.反应过程研究:反应动力学、反应热、结晶、相变

4.属性的测定:纯度、玻璃化转变、居里点

热失重分析(TG):在程序控制温度下,测量物质与温度关系m=f(T)的一种技术,目前分为等温热重法和非等温热重法两种类型。特别注意,热重分析法Thermogravimmetric Analysis,也有时候简写为TGA。

热重曲线(TG曲线)纵坐标表示质量mg或剩余百分数%,横坐标一般表示温度或者时间,对TG曲线求微分dm/dt即质量变化速率,并将其表示为纵坐标、横坐标为温度或者时间,则得到微商热重(DTG)曲线。之前,这块的计算过程推出过教程:Origin教程|如何利用origin求微分并绘数据图需要可以点击跳转查看。

DTG曲线上出现的各种峰对应着TG曲线上各个重量变化阶段,通过DTG上的峰位可以更加快速确定最大的反应速率时对应的温度Tf,也可以辅助找出不太明显的重量变化阶段;

如果需要量化分析,对DTG峰面积进行积分可以准确计算出该变化阶段样品重量变化值。同时,对比DTG和DTA可以判断出峰的引起原因,下图是草酸钙的量化计算。

100-200℃,失重量12.2%;400-500℃,失重量18.8%;600-800℃,失重量29.8%;

再比如下面这个,可以做简要的推断分析

再复合材料炭黑含量计算

热差分析(DTA):在程序控制温度下,测量待测物质和参比物之间的温度差与温度或时间的一种技术。其原理是试样在加热或者冷却过程中发生如相变、熔化、沸腾、蒸发、晶格结构变化,就有吸热或者放热发生,若以惰性气体为参比物,试样和参比物之间出现的温度差变化率曲线,则为差热曲线或者DTA曲线。

应用方面:

1.研究高聚物在空气和惰性气体中的受热

2.研究高聚物中单体含量对Tg的影响

3.研究共聚物结构

4.烧结进程研究

差示扫描量热法(DSC):在程序控制温度下,测量输给待测物质和参比物的能量差与温度或时间关系的一种技术,提供物理、化学变化过程中有关吸热、放热、热熔变化等定量或定性信息,全称Differential Scanning Calorimeter,可分为功率补偿型和热流型两种。

很容易发现,DTA和DSC在功能上基本相同,但DSC是在DTA基础上发展起来的,DSC比DTA应用广泛度更占优势。针对不同聚合物,DTA有利于定性分析去测定Tg和Tm以及材料的热稳定性等;DSC利于定量测定比热△H、分解、结晶等过程;在温度范围方面,DTA高温炉可达到1500℃以上,在高温矿物、冶金方面有优势。

一般DSC以样品吸热和放热速率为纵坐标,以温度或时间为横坐标,从下图可以看出,相比DTG,DSC可以提供更多的材料信息。

DSC和DTA相比热重稍微更难理解一些,利用的是动态零位平衡原理,样品与参比物温度,无论样品是吸热还是放热,两者的温度差都趋向零,即△T=0。因此,DSC测的是维持样品与参比物处于相同温度所需的能量差△W(dH/dT),反映的是样品热焓的变化。

DSC典型的综合图谱如下:

针对不同的DSC曲线,根据经验可判断出物质结晶态

针对聚合物的熔点和玻璃化转变温度也有其测定规范

科学指南针为超过3000家高校和企业提供一站式科研服务。截止2021年6月:服务1049家高校、2388家企业,提供249所高校研究所免费上门取样服务,平均每天处理样品数5000+、 注册会员数18w+、平均4.5天出结果、客户满意度超过98%。

免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。

更多科研干货教程,可以点击下面链接获取哦~

TG测试

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值