第一性原理

最近看到一段排比,有种被直击要害又拨云见雾的感觉,分享给大家:
职场的第一性原理是价值,不是努力;
家庭的第一性原理是经济,不是感情;
教育的第一性原理是培养能力,不是分数;
健康的第一性原理是自律,不是医疗;
投资的第一性原理是风险控制,不是高回报···
看完有种过去走了许多弯路,现在才意识到问题本质的豁然开朗的感觉!
你是否也曾陷入过这样的困境:职场中跟着行业惯例做方案,结果投入不少却毫无突破;生活里照搬别人的减肥、理财方法,最终只换来 “努力却无效” 的挫败?
我们习惯用 “经验类比” 解决问题,别人这么做、过去这么做,所以我也这么做,却忽略了一个关键:经验是表象的复现,而真正的破局,需要回到问题的 “根” 上。
这就是第一性原理的价值:它让我们跳出 “随波逐流” 的思维惯性,像拆解积木一样,把复杂问题拆成不可再分的基础要素,再从本质出发重构解决方案。
无论是解决客户投诉率上升的职场难题,还是突破减肥效果差的生活困境,第一性原理都能成为你 “从根上解决问题” 的思维工具。

Part1.什么是第一性原理

第一性原理(First Principles)源于古希腊哲学,后经马斯克等实践者普及,核心定义可概括为:忽略现有经验、行业惯例的干扰,将问题拆解为无法再分割“基础要素”,再从这些要素出发,重新推导、构建解决方案。
要理解第一性原理,核心是跳出 “经验类比” (一种通过参考已有的类似经验、先例或普遍做法来理解新问题、做出决策或预测结果的思维方式)的惯性,回归事物的底层本质,通过拆解基础要素、重构逻辑来解决问题。它并非否定经验,而是在经验失效、需要创新或突破时,提供 “从根上解决问题” 的思维工具。
运用第一性原理思考,需遵循一个清晰的“破而后立”的过程,如下图所示:
在这里插入图片描述
这个过程看似简单,实则反人性,因为它需要你主动质疑你深信不疑的事物,会耗费大量的认知能量,但也正是这种“先破后立”,才能带来真正的颠覆性突破。

Part2.第一性原理的应用

职场中,遇到常规方法无效、需要突破创新、解决复杂问题时,第一性原理的回报率极高;生活中,第一性原理能帮我们跳出 “别人都这么做” 的陷阱,做出更贴合自身需求的选择。
接下来,分享两个案例,用经验类比和第一性原理两种不同的思考方式进行对比,辅助大家对它的深入了解。

案例1:产品用户留存率低的问题

产品用户留存率低的问题可以说是职场中反复出现的顽固性问题,为什么说是顽固性问题?因为大部分人一直在用经验类比思维去解决问题,但因为没抓住问题本质,所以一直不得其法。
针对这个问题,经验类比思维的人的处理方式是这样的:“别人发优惠券留住用户,我们也发”“别人做签到活动,我们也搞起来”,这样一顿操作下来,发现用户并不领情,留存率依然低迷。
使用第一性原理思维的人是如何落地的呢?大概分为:拆解核心要素、剥离表象找本质和重构解决方案三步
第1步,拆解核心要素,我们要先了解用户留存的本质是用户能持续从产品中获得“核心价值”,然后拆解为3个不可再分的要素;
第2步,根据第一步分析出的3个要素去排查即可;
第3步,排查要素后,去重构解决方案即可。
具体内容较多,用流程图给大家呈现,效果更加直观。
在这里插入图片描述
经过第一性原理对留存率低的问题去重构解决方案后,结果就是:3个月后留存率提升45%,远高于“发优惠券”的10%提升效果。

案例2:针对“每天很忙,但没做成事”的时间管理问题

如果说第一个案例中的难题是工作中的顽固性问题,那么案例二就是生活中比较顽固的问题了,针对这个问题,类比思维和第一性原理思维都给出了自己的方案。
经验类比思维会这样做:照搬 “别人的时间表”,比如每天5点起、每小时做一件事,但结果却是因不匹配自身节奏、没抓核心任务,导致低效依然存在,其本质是忽略了时间管理的本质是“优先分配时间给核心目标”。

而第一性原理的落地步骤依然是3步:拆解核心要素、剥离表象找本质和重构解决方案。
在这里插入图片描述
结果:1个月后顺利通过证书考试,工作KPI提前完成,且每天有1小时陪伴家人,不再 “忙而无序”。

Part3.如何训练第一性原理思维

训练第一性原理思维,核心是建立 “拆解本质→验证要素→重构方案” 的刻意思考习惯,需从 “认知方法” 和 “实践练习” 两个维度落地,以下是可直接执行的5个步骤,方便大家理解,也附带了具体的案例。

Step1:回归核心问题,剥离 “表面信息”

第一性原理的起点是 “不被问题的表象迷惑”,先明确 “真正要解决的问题是什么”,再剔除所有无关的、附加的信息

操作方法:用 “5W1H” 追问核心 ——What(核心问题)、Why(根本目的)、Who(关键对象),其余如 “别人的经验”“常规做法” 先暂时搁置。
在这里插入图片描述

Step2:拆解问题,直到 “不可再分的第一性要素”

将核心问题拆解为最基础、无法再拆分的要素,避免停留在 “中间结论” 或 “默认假设” 上。

操作方法:用 “层层追问+维度拆解”(如结构、因果、资源),直到回答这个要素还能拆吗?拆到最后是什么?

比如,减肥效果差的问题,拆解路径为:
在这里插入图片描述
避免停留在 “我运动了但没瘦”,拆解到 “热量摄入” 和 “消耗结构” 才是本质。

Step3:验证要素的 “真实性” 与 “必要性”

拆解出的要素可能存在 “假要素”或 “冗余要素”,需用事实、数据或逻辑验证,排除无效信息。

操作方法:

对每个要素问两个问题:

1)这个要素是事实吗?有数据支撑吗?

2)没有这个要素,问题还存在吗?

比如,在工作中客户投诉率上升
在这里插入图片描述

Step4:基于本质要素,重构解决方案

此处要绕开常规做法,直接从第一性要素出发,重新组合解决方案,而不是在原有框架里进行修补。
针对Step3案例的“客服响应慢”的结论,重构方案可以参考以下内容:
在这里插入图片描述

Step5:刻意练习,把思维变成 “肌肉记忆”

第一性原理思维需长期练习,从小事拆解入手,然后再逐步迁移到复杂问题。

通过以上5步,就能逐步养成穿透表象,直击本质的思维习惯了。

说到底,第一性原理不是玄乎的理论,而是一套可刻意练习的拆解与重构方法。它的核心不是 “找标准答案”,而是建立 “从根上解决问题” 的思考路径,它非常耗费脑力,所以不必事事都用,把它用在那些最重要、最棘手、最需要突破的问题上就可以了。

[混合波束成形]基于深度学习的大规模天线阵列混合波束成形设计(Matlab代码、Python代码实现)内容概要:本文介绍了基于深度学习的大规模天线阵列混合波束成形的设计方法,并提供了Matlab和Python代码实现。该设计聚焦于5G及未来通信系统中的关键使能技术——混合波束成形,通过深度神经网络对复杂的信道状态信息(CSI)进行高效估计与波束成形矩阵优化,在保证通信性能的同时降低硬件成本与计算开销。文中详细阐述了算法模型构建、训练流程设计及仿真验证过程,展示了深度学习在通信物理层中的深度融合应用,尤其适用于毫米波大规模MIMO系统场景。; 适合人群:具备通信工程、信号处理或人工智能基础知识的研究生、科研人员及从事5G/6G技术研发的工程师;熟悉Matlab或Python编程,对深度学习和无线通信系统有一定实践经验者更为适宜。; 使用场景及目标:①研究深度学习在无线通信物理层中的应用,特别是CSI反馈压缩与波束成形优化;②复现先进混合波束成形算法,提升系统频谱效率与能效;③为学术论文复现、课题研究或工程项目开发提供可运行的代码参考与技术路线支持。; 阅读建议:建议读者结合文中提供的代码逐模块分析,重点关注神经网络结构设计与通信约束条件的融合方式,同时可扩展尝试不同网络架构或信道模型以深化理解。
STM32电机库无感代码注释无传感器版本龙贝格观测三电阻双AD采样前馈控制弱磁控制斜坡启动内容概要:本文档为一份名为《STM32电机库无感代码注释无传感器版本龙贝格观测三电阻双AD采样前馈控制弱磁控制斜坡启动》的技术资料,主要围绕基于STM32的永磁同步电机(PMSM)无传感器矢量控制系统的实现展开,详细注解了采用龙贝格观测器(Luenberger Observer)进行转子位置与速度估算的控制算法,涵盖三电阻采样、双通道ADC数据采集、电流环前馈补偿、弱磁扩速控制及斜坡启动策略等关键技术模块。该文档不仅提供了完整的控制逻辑说明,还深入解析了底层代码实现,适用于高精度、高性能电机控制系统的开发与学习。; 适合人群:具备一定嵌入式开发基础和电机控制理论知识的电气工程、自动化、机电一体化等相关专业的高校师生、科研人员及从事电机驱动开发的工程师;尤其适合希望深入理解无传感器电机控制算法及STM32平台实现的技术人员。; 使用场景及目标:①学习和掌握基于龙贝格观测器的无传感器电机控制原理与实现方法;②理解三电阻采样、双AD同步采集、前馈控制、弱磁控制和斜坡启动等关键环节的设计思路与代码实现;③用于高校课程设计、毕业设计、科研项目开发或工业级电机控制器的研发参考。; 阅读建议:建议读者结合STM32开发环境和电机控制实验平台进行代码阅读与调试,配合电机控制理论教材逐步理解各模块功能,重点关注观测器设计、坐标变换、PI调节器参数整定及ADC采样时序等核心部分,以实现理论与实践的有效结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值