确定相机外部参数需要几个点?
确定相机的外部参数(即相机的位姿,包括位置和方向)通常需要至少三个非共线的点。这三个点在三维空间中有明确的对应关系,可以通过它们的二维图像坐标和三维世界坐标来进行求解。
必须是至少三个非共线的点吗?
-
非共线性:如果选择的三点共线,它们在三维空间中只能定义一个方向,而无法确定相机的位姿(位置和朝向)。这样的点无法提供足够的信息来区分相机的旋转和位移。
-
自由度:相机的外部参数有六个自由度(平移的三个方向和旋转的三个角度)。三个非共线的点提供了足够的约束条件,使得可以唯一确定相机的位姿。
三组对应点(三维与二维对应点)就能将R、T求出来吗?
理论上,三个非共线的点可以用来求解相机的旋转矩阵 R和平移向量 T。具体步骤如下:
-
点的对应关系:假设你有三个点在世界坐标系中的位置P1,P2,P3 和它们在相机坐标系中的对应点C1,C2,C3。
-
建立方程:你可以建立以下关系:
Ci=RPi+T(i=1,2,3)
这意味着每个相机坐标系中的点 Ci都可以通过旋转 R和平移 T从世界坐标系中的点 Pi得到。
-
求解:通过这些方程,可以求解出 R和 T。通常需要使用一些优化方法(如最小二乘法)来最小化重投影误差,从而得到更准确的 R 和 T。
-
约束条件:需要注意的是,旋转矩阵 R必须是一个正交矩阵,且行列式为1,这为求解增加了约束条件。
那为什么用棋盘格标定相机时,拍这么多照片?
拍摄多张照片的原因主要有以下几点:
-
提高精度:多张照片能提供更多的特征点,从而增加计算外部参数(旋转矩阵 RR 和平移向量 TT)的精度。每张照片中的特征点都可以用来约束相机的位姿。
-
鲁棒性:在实际拍摄过程中,某些特征点可能由于光照、反射或其他因素而变得不清晰或不可用。通过多张照片,可以有效地减少这些不确定性带来的影响,确保算法能够找到足够的可靠特征点。
-
优化误差:通过多张照片,可以使用最小二乘法等优化算法来同时考虑所有照片中的特征点,从而最小化重投影误差。这种方法能够提高标定结果的稳定性和准确性。
-
多样性:不同的拍摄角度和距离可以提供不同的视角和信息,有助于更全面地捕捉相机的内外参数。
-
减少过拟合:虽然使用更多的点会增加计算的复杂性,但合理的选择和分布可以避免过拟合,确保标定结果的泛化能力。
如何使用已知标定板求解外参数?
1. 特征点提取
- 角点检测:使用计算机视觉库(如OpenCV)中的角点检测算法来提取棋盘格的角点位置。
- 亚像素精度:对检测到的角点进行亚像素级别的精确化处理,使用
cv2.cornerSubPix
函数。
2. 构建三维点集(靶标板的三维空间坐标已知)
- 三维点坐标:根据已知的标定板尺寸,构建对应的三维点坐标。对于棋盘格,通常以左下角为原点,其他角点的坐标可以按行列顺序计算。
3. 解决PnP问题
- 输入数据:将提取的二维图像点和对应的三维点集输入到PnP算法中。
- 求解外参:使用OpenCV的
cv2.solvePnP
函数,求解相机的旋转向量(R)和平移向量(T)。
4. 优化和验证
- 重投影误差:计算重投影误差,验证求解结果的准确性。可以通过将三维点投影到图像平面,比较与实际图像点的位置。
- 束调整:如果有多个视角的标定图像,可以使用束调整算法(如
cv2.bundleAdjustment
)进一步优化外参。
示例代码(Python + OpenCV)
import cv2
import numpy as np
# 定义棋盘格尺寸
chessboard_size = (9, 6) # 内部角点数量
square_size = 0.025 # 每个方格的实际尺寸(米)
# 准备对象点
objp = np.zeros((chessboard_size[0] * chessboard_size[1], 3), np.float32)
objp[:, :2] = np.mgrid[0:chessboard_size[0], 0:chessboard_size[1]].T.reshape(-1, 2) * square_size
# 存储对象点和图像点
objpoints = [] # 3D点
imgpoints = [] # 2D点
# 读取图像并检测角点
images = [...] # 读取的图像列表
for img in images:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
if ret:
objpoints.append(objp)
imgpoints.append(corners)
# 计算相机外参
ret, rvec, tvec = cv2.solvePnP(objpoints[0], imgpoints[0], camera_matrix, dist_coeffs)
# 计算重投影误差(可选)
# ...
# 输出外参
print("Rotation Vector:\n", rvec)
print("Translation Vector:\n", tvec)
为什么用棋盘格的不同位置进行标定?
1. 增加视角多样性
- 不同视角:通过在不同的位置和角度拍摄棋盘格,可以获取相机在多个视角下的图像。这种多样性有助于捕捉相机在不同位置和方向下的成像特性,提供更全面的标定数据。
- 减少偏差:如果只在一个位置拍摄,可能会导致某些特定的误差被放大,影响标定结果的准确性。
2. 提高重投影精度
- 更好的几何关系:不同位置的棋盘格图像可以提供不同的几何关系,帮助在求解外参数时更好地约束相机模型,减少重投影误差。
- 优化算法:在优化过程中,多角度的数据可以帮助算法更好地收敛到全局最优解,避免局部最优。
3. 增加特征点的覆盖范围
- 覆盖整个图像平面:在不同位置拍摄棋盘格可以确保特征点在整个图像平面上的均匀分布,避免某些区域特征点稀疏的问题。
- 增强鲁棒性:在某些情况下,特征点可能因为光照、反射等因素而难以检测。多角度拍摄可以增加成功检测特征点的机会。
4. 减少畸变影响
- 相机畸变:相机镜头通常存在一定的畸变(如径向畸变和切向畸变),通过不同位置的标定图像,可以更好地估计和补偿这些畸变。
- 多样化的角点位置:在不同位置拍摄的棋盘格图像可以提供更丰富的角点分布,帮助更准确地估计畸变参数。
pnp算法求解的时候,一般用多少个点?
最小要求
- 最少三个点:理论上,使用至少三个非共线的三维点和对应的二维点可以求解相机的外参。这是因为三个点可以定义一个平面,而PnP算法需要足够的信息来确定相机的位姿。
推荐数量
- 六个或更多点:为了提高求解的准确性和鲁棒性,通常建议使用至少六个对应点。使用更多的点可以:
- 提高精度:通过最小化重投影误差来获得更准确的外参估计。
- 增强鲁棒性:在实际应用中,多组点可以帮助过滤掉噪声和错误匹配,减少对单个点的依赖。
使用多个点的原因
虽然理论上只需要三个点来求解,但使用更多的点有几个好处:
- 冗余信息:更多的点提供了冗余信息,这样即使某些点存在噪声或错误匹配,仍然可以得到一个可靠的解。
- 最小化误差:通过最小化重投影误差,可以更好地拟合数据。PnP算法通常会使用最小二乘法来优化解。
- 增强鲁棒性:多组点可以帮助算法更好地处理异常值(outliers),如错误匹配的特征点。
这个重投影误差是谁投影到谁上面去?
重投影误差是计算在三维空间中的点通过相机模型投影到二维图像平面后的误差。具体来说,重投影误差的计算过程如下:
定义
- 三维点:假设有一个三维空间中的点P=(X,Y,Z)T。
- 相机外参:相机的外参由旋转矩阵 R和平移向量t 组成,这些参数定义了相机在三维空间中的位置和朝向。
- 相机内参:相机的内参(如焦距和主点位置)通常用相机内参矩阵 K表示。
投影过程
-
将三维点转换到相机坐标系:
-
将三维点投影到二维图像平面:
使用内参矩阵将相机坐标系中的点投影到图像平面:其中 (u,v)是在图像平面上的像素坐标。
重投影误差
-
定义:重投影误差是实际观测到的二维特征点(例如通过图像处理提取的特征点)与投影后的二维点之间的差异。
-
计算:
其中pobserved 是实际观测到的特征点坐标,而pprojected 是通过上述投影过程计算得到的点。
总结
重投影误差衡量的是三维点通过相机模型投影到图像平面后,与实际观测到的特征点之间的差异。通过最小化这一误差,可以优化相机的外参和三维点的位置,从而提高估计的精度和鲁棒性。