2D 射影几何和变换

2D 射影几何是研究平面几何中射影变换的数学分支,广泛应用于计算机视觉、图像处理和机器人技术等领域。以下是对2D射影几何和变换的详细讲解:

1. 基本概念
1.1 射影平面

射影平面(Projective Plane)是欧几里得平面的扩展,通过添加“无穷远点”和“无穷远线”来消除平行线不相交的问题。在射影平面中,任何两条直线都相交于一点,任何两个点都确定一条直线。

  • 齐次坐标:在射影平面中,点用齐次坐标表示。一个二维点 (x,y) 在射影平面中表示为 (x,y,w),其中 w不等0。当 w不等0 时,齐次坐标 (x,y,w) 对应的笛卡尔坐标为 (x/w​,y/w​)。当 w=0 时,该点称为无穷远点。

1.2 射影变换

射影变换(Projective Transformation)是射影平面到自身的双射变换,保持共线性和交比不变。射影变换可以用一个 3×3 的非奇异矩阵表示。

2. 射影变换的性质
2.1 矩阵表示

射影变换可以用一个 3×3 的非奇异矩阵 H 表示:

对于一个点 x=(x,y,w),其变换后的点 x′ 为:

 

2.2 变换类型

射影变换包括以下几种基本类型:

  • 平移:仅改变点的位置。

  • 旋转:改变点的方向。

  • 缩放:改变点的大小。

  • 剪切:改变点的形状。

  • 透视变换:模拟透视投影效果。

3. 射影变换的应用
3.1 图像校正

通过射影变换可以对图像进行校正,例如纠正透视畸变。

3.2 图像拼接

在图像拼接中,射影变换用于将多张图像映射到同一坐标系下,形成全景图。

3.3 相机标定

射影变换用于相机标定,确定相机的内外参数。

4. 射影变换的参数估计
4.1 直接线性变换(DLT)

直接线性变换(Direct Linear Transformation, DLT)是一种估计射影变换矩阵 H 的方法。给定四对对应点 (xi​,xi′​),可以构建一个线性方程组,求解 H 的元素。

步骤

  1. 对每对对应点 (xi​,xi′​),构建两个方程:
  2. 将这些方程组合成一个线性方程组 Ah=0,其中 h 是 H 的元素向量化。
  3. 使用奇异值分解(SVD)求解 h。

 

4.2 归一化DLT

为了提高数值稳定性,通常对输入点进行归一化处理,再进行DLT。

5. 实现代码(C++ + OpenCV)

以下是使用OpenCV实现射影变换的代码示例:

#include <opencv2/opencv.hpp>
#include <vector>

using namespace cv;
using namespace std;

int main() {
    // 读取输入图像
    Mat img = imread("input.jpg");

    // 定义源点和目标点
    vector<Point2f> srcPoints = { {0, 0}, {img.cols, 0}, {img.cols, img.rows}, {0, img.rows} };
    vector<Point2f> dstPoints = { {100, 100}, {300, 100}, {300, 300}, {100, 300} };

    // 计算射影变换矩阵
    Mat H = getPerspectiveTransform(srcPoints, dstPoints);

    // 应用射影变换
    Mat transformedImg;
    warpPerspective(img, transformedImg, H, Size(400, 400));

    // 显示结果
    imshow("Original", img);
    imshow("Transformed", transformedImg);
    waitKey(0);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值