2D 射影几何是研究平面几何中射影变换的数学分支,广泛应用于计算机视觉、图像处理和机器人技术等领域。以下是对2D射影几何和变换的详细讲解:
1. 基本概念
1.1 射影平面
射影平面(Projective Plane)是欧几里得平面的扩展,通过添加“无穷远点”和“无穷远线”来消除平行线不相交的问题。在射影平面中,任何两条直线都相交于一点,任何两个点都确定一条直线。
-
齐次坐标:在射影平面中,点用齐次坐标表示。一个二维点 (x,y) 在射影平面中表示为 (x,y,w),其中 w不等0。当 w不等0 时,齐次坐标 (x,y,w) 对应的笛卡尔坐标为 (x/w,y/w)。当 w=0 时,该点称为无穷远点。
1.2 射影变换
射影变换(Projective Transformation)是射影平面到自身的双射变换,保持共线性和交比不变。射影变换可以用一个 3×3 的非奇异矩阵表示。
2. 射影变换的性质
2.1 矩阵表示
射影变换可以用一个 3×3 的非奇异矩阵 H 表示:
对于一个点 x=(x,y,w),其变换后的点 x′ 为:
2.2 变换类型
射影变换包括以下几种基本类型:
-
平移:仅改变点的位置。
-
旋转:改变点的方向。
-
缩放:改变点的大小。
-
剪切:改变点的形状。
-
透视变换:模拟透视投影效果。
3. 射影变换的应用
3.1 图像校正
通过射影变换可以对图像进行校正,例如纠正透视畸变。
3.2 图像拼接
在图像拼接中,射影变换用于将多张图像映射到同一坐标系下,形成全景图。
3.3 相机标定
射影变换用于相机标定,确定相机的内外参数。
4. 射影变换的参数估计
4.1 直接线性变换(DLT)
直接线性变换(Direct Linear Transformation, DLT)是一种估计射影变换矩阵 H 的方法。给定四对对应点 (xi,xi′),可以构建一个线性方程组,求解 H 的元素。
步骤:
- 对每对对应点 (xi,xi′),构建两个方程:
- 将这些方程组合成一个线性方程组 Ah=0,其中 h 是 H 的元素向量化。
- 使用奇异值分解(SVD)求解 h。
4.2 归一化DLT
为了提高数值稳定性,通常对输入点进行归一化处理,再进行DLT。
5. 实现代码(C++ + OpenCV)
以下是使用OpenCV实现射影变换的代码示例:
#include <opencv2/opencv.hpp>
#include <vector>
using namespace cv;
using namespace std;
int main() {
// 读取输入图像
Mat img = imread("input.jpg");
// 定义源点和目标点
vector<Point2f> srcPoints = { {0, 0}, {img.cols, 0}, {img.cols, img.rows}, {0, img.rows} };
vector<Point2f> dstPoints = { {100, 100}, {300, 100}, {300, 300}, {100, 300} };
// 计算射影变换矩阵
Mat H = getPerspectiveTransform(srcPoints, dstPoints);
// 应用射影变换
Mat transformedImg;
warpPerspective(img, transformedImg, H, Size(400, 400));
// 显示结果
imshow("Original", img);
imshow("Transformed", transformedImg);
waitKey(0);
return 0;
}