pytorch---Cosine learning rate scheduler

余弦学习率衰减

公式:

在这里插入图片描述

需要用到lambda 表达式:

lambda:epoch: (epoch / 40) if epoch < 40 else 0.5 * (math.cos(40/100) * math.pi) + 1)

初始学习率为lr=10^-3

如果是总的100个epoch,只使用后60个应用余弦学习率衰减,那么前40个不作cosine计算,前40个epoch的学习率为:lr1=epoch/40*lr, 那么后60个epoch适用0.5 * (math.cos(40/100) * math.pi) + 1)。

计算得到最末尾的学习率为2.5x10^-4.

eg:

 

<think>好的,用户想了解如何使用CUDA对LLaMA-Factory进行微调。首先,我需要回忆一下LLaMA-Factory的基本情况,它是一个用于微调大模型的开源库,支持多种配置和硬件加速。用户提到了CUDA,所以需要确保他们的环境配置正确,特别是GPU相关的设置。 接下来,根据用户提供的引用内容,引用[2]提到创建Python虚拟环境,使用conda创建名为llama_factory的环境,Python版本3.11。这可能是一个关键步骤,因为环境隔离能避免依赖冲突。然后,引用[3]中的内容涉及检查CUDA是否可用,比如使用torch.cuda.is_available(),如果返回False,说明CUDA配置有问题,可能驱动没装或者PyTorch版本不对。用户需要确认PyTorch是否正确安装了支持CUDA的版本,而不是CPU版本。 引用[1]给出了启动webui的命令,其中CUDA_VISIBLE_DEVICES=0指定使用第一个GPU,这可能涉及到多GPU的情况,但用户可能只需要单卡。此外,GRADIO_SERVER_PORT设置端口号,这部分可能用户暂时不需要调整,除非端口冲突。 接下来,用户可能需要的步骤包括安装LLaMA-Factory、配置环境、准备数据集、选择微调方法等。比如,安装依赖时可能需要使用pip install -r requirements.txt,这里要确保所有依赖正确安装,特别是与CUDA相关的库,如torch、transformers等。 然后,微调脚本的参数设置也很重要,例如指定GPU设备、模型路径、数据集、微调方法(如LoRA)。用户可能需要运行类似train.py的脚本,并添加参数如--cuda_visible_devices=0,或者直接在代码中设置CUDA_VISIBLE_DEVICES环境变量。 可能的问题点:用户的环境是否正确配置,PyTorch是否支持CUDA,依赖是否安装完整,微调命令的参数是否正确。需要提醒用户检查这些步骤,并验证CUDA是否可用。 最后,用户可能需要参考官方文档或社区资源进行更详细的调整,比如多GPU训练或不同微调方法的选择。需要建议用户查阅相关文档,并提供示例命令供他们参考。</think>以下是使用CUDA对LLaMA-Factory进行微调的步骤指南: ### 一、环境准备 1. **创建虚拟环境**(避免依赖冲突) ```bash conda create --name llama_factory python==3.11 conda activate llama_factory ``` 引用[2]已验证该Python版本兼容性[^2] 2. **安装PyTorch CUDA版** ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` 安装后验证: ```python import torch print(torch.cuda.is_available()) # 应输出True print(torch.cuda.device_count()) # 显示可用GPU数量[^3] ### 二、LLaMA-Factory配置 1. **克隆仓库并安装依赖** ```bash git clone https://github.com/hiyouga/LLaMA-Factory cd LLaMA-Factory pip install -r requirements.txt ``` 2. **设置CUDA可见设备** ```bash export CUDA_VISIBLE_DEVICES=0 # 指定使用第一个GPU ``` ### 三、微调执行 ```bash python src/train_bash.py \ --stage sft \ --model_name_or_path /path/to/llama_model \ --do_train \ --dataset alpaca_gpt4_en \ --finetuning_type lora \ --output_dir /path/to/output \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 4 \ --lr_scheduler_type cosine \ --logging_steps 10 \ --save_steps 1000 \ --learning_rate 5e-5 \ --num_train_epochs 3.0 \ --fp16 # 启用混合精度训练 ``` ### 四、验证GPU使用 通过`nvidia-smi`命令观察GPU显存占用情况,正常应显示类似: ``` +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 123456 C python 15000MiB | +-----------------------------------------------------------------------------+ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值