Ridge regression:岭回归
与least-squares method (最小二乘法)相似,只是加了一个对输入数据权重的惩罚值, 这个惩罚参数称为regularization (正则化)。正则化降低模型的复杂度,防止模型的过度拟合。
Ridge regression 利用L2 regularization, 使各个输入变量的权重平方和最小。另外,使用alpha 参数控制正则化,alpha值越高,说明越多正则化,模型越简单。增加alpha值,表明使W的平均值趋向于零,或者趋向于相同。如果输入变量的scale不同,对L2 penalty的影响也不同。如果对输入的变量进行一定程度的转换,使不同的变量的scale相同,从而使不同的变量的权重相似,从而避免一些输入变量的权重过重。
代码实例
提高ridge regression R-square 值的一个方式: feature preprocessing 和normalization。
对输入变量进行转换的必要性