极限是数学分析的基础,也是后续所有学习的根基,微分、积分、级数无不例外都需要扎实的极限作为基础,因此在学习过程中,务必要弄清搞懂不同类型的极限在求解过程中应该使用怎样的方法才能快速的进行题目的分析与求解。本文将以极限论作为引子开启数学分析强化学习的旅程,今天将大致介绍在数列极限中常用的求解方法,后面的推文将会以专题形式对其中的某几种办法进行详细介绍。
常用求解数列极限的办法
1.定义法
直接使用数列极限的定义进行证明,但是该方法需要预先能够猜到数列的极限值。
2.极限的四则运算
如果原数列的通项可以被拆成简单项组合的形式进行四则运算,前提是每一个简单项应该也具有极限。
3.迫敛性定理
对于较复杂的数列通项,可以用两个极限相同的简单数列将此复杂数列夹在中间,将复杂的问题转化为求解两个简单的数列通项极限。
4.数列与子列的关系
有关数列与子列的两条结论应该熟记:①数列收敛的充要条件为其任何一个非平凡子列收敛。②单调数列,若有一子列收敛,则数列收敛。
5.单调有界定理
顾名思义,对于一个数列而言,从两个维度进行分析,如果能证明其单调【单调递增、单调递减均无所谓】且有界,则能进一步证明出该数列的极限存在。此时,单调递增且有上界的数列的极限值为其上确界;单调递减且有下界的数列的极限值为其下确界。
6.柯西收敛准则
&nb

最低0.47元/天 解锁文章
1373

被折叠的 条评论
为什么被折叠?



