高等数学学习笔记 ☞ 数列与数列的极限

1.  数列基本概念


1. 定义:就是以正整数集(或它的有限子集)为定义域的一列有序的数。

备注:
①:数列中的每一个数叫做这个数列的项。

②:排在第一位的数称为这个数列的第1项(通常也叫做首项),以此类推,排在第n位的数称为这个数列的第n项。

2. 一般形式:a_{1},a_{2},a_{3},...,a_{n},a_{n+1}...。记作:\left \{ a_{n} \right \},其中a_{n}称为该数列的通项,n为正整数。

备注:

①:数列中的项必须是数,它可以是实数,也可以是复数。

②:用符号\left \{ a_{n} \right \}表示数列,只不过是“借用”集合的符号而已。数列与集合的区别如下:

       集合中的元素是互异的,而数列中的项可以是相同的。

       集合中的元素是无序的,而数列中的项必须是有序的。

③:数列的通项不一定存在。

3. 等差数列与等比数列:

(1)等差数列:①:通项公式:a_{n}=a_{1}+(n-1)d。          ②:求和公式:S_{n}=\frac{n(a_{1}+a_{n})}{2}。   

(2)等比数列:①:通项公式:a_{n}=a_{1}q^{n-1}。                        ②:求和公式:S_{n}=\frac{a_{1}(1-q^{n})}{1-q}(q\neq 1)


2.  数列的极限基本概念


1. 数列的极限定义:已知数列\left \{ x_{n} \right \},存在常数a,对于任意的\varepsilon>0(很小的一个数),若存在正整数N(指数列的第N项),

                                 当n>N时(指第N项后边的所有项),有|x_{n}- a| < \varepsilon,即(a-\varepsilon< x_{n} < a+\varepsilon )(指x_{n}的落在小区间内),

                                 那么①:称数列\left \{ x_{n} \right \}收敛于a。②:称a为数列\left \{ x_{n} \right \}的极限,记作\displaystyle\lim_{n \to \infty }x_{n} = a

备注:

①:n\rightarrow \infty的含义:指的是从坐标轴上看,n趋近于无穷远处。数列的极限的定义就是要求n\rightarrow \infty

②:因为n为正整数,故n趋近于无穷大指的是趋于n正无穷大,记作n\rightarrow +\infty,简记:n\rightarrow \infty

③:\varepsilon:是一个很小的一个数,小到随便说一个数,\varepsilon都比这个数小。

④:有限数列不存在极限的概念,只有无限数列才具备极限的概念。

小贴士:

①:取整函数:①:形如y=[x]x\in R的函数,称为取整函数。  ②:[x]表示不超过实数x的最大整数。

②:一般来说,N随着\varepsilon的变小而变大,通常把N写作N(\varepsilon ),以强调N\varepsilon的变化而变化的依赖性,但并不意味着

       N\varepsilon唯一确定的。对于极限的定义而言,重要的是N的存在性,而不在于其值得大小。

③:证明数列的极限,根据数列的极限的定义可知,关键点就在于找到N的值,若要找N的值,出发点就在于

       当n>N时,不等式|x_{n}- a| < \varepsilon是否成立。

2. 数列的收敛与发散:

(1)收敛数列:已知数列\left \{ x_{n} \right \},当n趋近于无穷大时,数列的极限存在且等于一个常数。

(2)发散数列:已知数列\left \{ x_{n} \right \},当n趋近于无穷大时,数列的极限不存在。

备注:

①:数列的极限可以为无穷大\infty,但数列的极限为无穷大时属于极限不存在的一种,不能认为极限是存在的。

②:数列(函数)的收敛性描述的是数列(函数)逐渐趋近于某个特定值的过程,而数列(函数)的极限描述的则是

       这一趋近过程的最终结果,简而言之,收敛是过程,极限是结果。

3. 数列的极限性质:

(1)唯一性:若数列\left \{ x_{n} \right \}是收敛的,那么数列\left \{ x_{n} \right \}极限存在且唯一。

(2)有界性:已知数列\left \{ x_{n} \right \},如果存在M(M>0),使得对于任意的x_{n},都有|x_{n}|\leq M,则称数列\left \{ x_{n} \right \}是有界的。

  ①:若数列\left \{ x_{n} \right \}是收敛的,那么数列\left \{ x_{n} \right \}是有界的。但是,若数列\left \{ x_{n} \right \}是有界的,那么数列\left \{ x_{n} \right \}不一定是收敛的。

         \Rightarrow 数列有界是数列收敛的必要不充分条件。

  ②:若数列\left \{ x_{n} \right \}是无界的,那么数列\left \{ x_{n} \right \}一定是发散的。但是数列\left \{ x_{n} \right \}是发散的,那么数列\left \{ x_{n} \right \}不一定是无界的。

         \Rightarrow 数列无界是数列发散的充分不必要条件。

(3)保号性:

  ①:若\displaystyle\lim_{n \to \infty }x_{n} = aa>0a<0),则存在正整数N,当n>N时,x_{n}>0x_{n}<0)。

  ②:已知数列\left \{ x_{n} \right \}从某项起,x_{n}\geq 0x_{n}\leq 0),若\displaystyle\lim_{n \to \infty }x_{n} = a,则a\geq 0a\leq 0)。

  ③:已知数列\left \{ x_{n} \right \}从某项起,x_{n}> 0x_{n}<0),且\displaystyle\lim_{n \to \infty }x_{n} = a,则a\geq 0a\leq 0)。

备注:

①:若数列\left \{ x_{n} \right \}是收敛的,则数列\left \{ x_{n} \right \}是有界的,且极限存在。

②:若数列\left \{ x_{n} \right \}极限是存在的,则数列\left \{ x_{n} \right \}是有界的,且收敛。

③:若数列\left \{ x_{n} \right \}是有界的,则数列\left \{ x_{n} \right \}不一定是收敛的,极限也不一定存在。eg:x_{n}=(-1)^{n}

4. 数列的子数列定义:已知数列\left \{ x_{n} \right \},从中选出无限多项,并按照原来位置重新排列,那么构成的新数列称为该数列的子数列。

5. 数列的子数列性质:

①:若数列\left \{ x_{n} \right \}的极限为a,则其任意子数列也收敛,且极限也为a

②:若数列\left \{ x_{n} \right \}是发散的,那么它也可以有收敛的子数列。

③:若数列\left \{ x_{n} \right \}的某一子数列是发散的,则数列\left \{ x_{n} \right \}是发散的。

④:若数列\left \{ x_{n} \right \}的两个子数列收敛于不同的极限,则数列\left \{ x_{n} \right \}是发散的。

⑤:\displaystyle\lim_{n \to \infty }x_{n} = a \Leftrightarrow \displaystyle\lim_{n \to \infty }x_{2n} = \displaystyle\lim_{n \to \infty }x_{2n+1} = a

备注:\displaystyle\lim_{n \to \infty }x_{2n} = a为偶数项极限;\displaystyle\lim_{n \to \infty }x_{2n+1} = a为奇数项极限,数列\left \{ x_{2n} \right \}\left \{ x_{2n+1} \right \}属于数列\left \{ x_{n} \right \}的子数列。

小贴士:

(1)单向推理:充分条件、必要条件。

  若p\Rightarrow q,那么称pq的充分条件,qp的必要条件。

  若p\nRightarrow q,那么称pq的不充分条件,qp的不必要条件。

(2)双向推理:充分必要条件、充分不必要条件、必要不充分条件、既不充分也不必要条件。

  若 p\Rightarrow qq\Rightarrow p,那么称pq的充分必要条件;称qp的充分必要条件。

  若 p\Rightarrow qq\nRightarrow p,那么称pq的充分不必要条件;称qp的必要不充分条件。

  若 p\nRightarrow qq\Rightarrow p,那么称pq的必要不充分条件;称qp的充分不必要条件。

  若 p\nRightarrow qq\nRightarrow p,那么称pq的既不充分也不必要条件;称qp的既不充分也不必要条件。

  ①:箭头左边表示充分不充分,箭头右边表示必要不必要。

  ②:充不充分&必要不必要是前者针对后者来说的。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值