先临三维何以成为当前国内三维扫描领军大厂

根据Markets and Markets出具的报告,3D数字化全球市场(包含3D扫描仪、动作捕捉系统、3D软件、应用)预计将从2024年的283亿美元增长到 2029年的518亿美元,预测期内的复合年增长率 (CAGR) 为12.9%。市场增长将主要来自汽车、医疗、航空航天、个性化定制等行业应用的良好增长。 

先临三维2023年营收10.18亿元,增幅32.56%;2024年上半年度营收5.2亿元,同比增长12.30%。因此可以预测先临三维2024年营收将继续保持10亿元以上,成为名副其实的国内三维扫描领域领军大厂。2025年1月11日,先临三维20周年庆典暨新研发生产基地启用仪式在杭州总部圆满举行。

·

01

新基地剪彩,共筑3D视觉新高地

在先临三维新研发生产基地启用仪式上,政府领导、专家学者、合作伙伴和股东代表,与公司管理团队共同剪彩,见证先临三维研发增力和产能扩张的新起点。

作为中国视谷窗口园区的“开拓者”和行业领军企业,先临三维的新研发生产基地历时两年正式落成,总建筑面积近10万平方米,与已投入运营的AB座大楼并肩而立,共同构成了3D视觉技术的创新高地。

新基地内部设有全新升级的CNAS认可精度实验室,其在测量空间范围、精度溯源能力及环境保障水平等多个维度的合实力处于国际领先。此外,光学实验室和自动化检测车间等十余个研发测试实验室也同步实现扩容升级,进一步为研发的创新能力筑基,为产品的精度控制护航。

在生产方面,先临三维严格遵循标准体系要求,新建生产车间和配套的现代化智能仓储设施。这为产能提升、品质管控优化和交付能力增强奠定坚实基础,确保了先临三维能够充分满足汽车工业、能源重工、工程机械、电子电器、艺术文博、数字齿科、精准医疗、教育科研等行业对高精度3D视觉测量产品日益攀升的需求。

02

二十周年庆典,共启荣耀新征途

在先临三维20周年庆典上,各界代表分别进行了发言,分享他们与先临三维携手共进、同频共振的故事。

090b8d1a6610bd93ad0965f73e2647e8.jpeg

在精密制造领域中,毫厘之差足以决定质量优劣。因此,用精准测量保障精密制造和精细控制,成为先临三维的初衷与动力。历经二十载成长与蜕变,先临三维始于初心,持于恒心。

做专技术,从摆脱进口依赖到打造集成化软硬件开发平台,先临三维连续13年将约20%的营收投入研发,全力推进技术的创新升级,累计获得400多项授权专利,树立了“先临精度”的行业标杆。

做精产品,公司以三维相机初涉行业,发展到如今依托工业3D扫描测量检测和齿科数字化的双轮驱动,持续释放高精度三维视觉测量产品在广泛制造领域的应用价值与增长潜力。

做好服务,从深耕本土市场到全面拓展国际舞台,先临三维已在德国斯图加特、美国加利福尼亚州和佛罗里达州以及日本东京设立子公司,按照国际化品质标准体系运营,强化本地化服务,帮助全球100+国家和地区的用户提质增效。

在庆祝二十周年之际,先临三维还特别筹备了产品技术论坛和员工游园会等活动。

03

专注笃定,闪耀无境

二十年前,先临三维如同一粒种子,在三维视觉的沃土中悄然萌芽。

二十年间,先临三维奉行长期主义,在持续的创新投入与技术深耕中收获。

展望未来,20岁的先临三维将在高精度三维视觉测量的道路上,以技术创新为引领,以产品精度为基础,以应用深度为支点,持续专注,坚定前行,永远闪耀!

5ab59e13906eab3715e1405d410e4f14.jpeg

欢迎转发

5a36dbb50f7fb5d83c20f7118c9c9c6c.jpeg

欢迎加入硕博千人交流Q群:248112776

延伸阅读:

1.春节后!2025年TCT亚洲增材制造业年度峰会-议程总览

2.3D打印机的买卖为什么这么难?增材企业面临双重困境

3.薅羊毛机会!低价购买知名品牌高品质3D打印机官翻机

4.在极寒环境成功3D打印金属零件,美军获得重要支持技术

6c888b638c0a224b605a0a4a53c03aa7.gif

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值