开关电容闭环运放

本文主要讨论基于开关电容的运放和积分器的建立过程。

0.Revision History

2025.4.24 1st manuscript

1.闭环系统

一个闭环系统如下图所示:
在这里插入图片描述

其闭环的传递函数可以表示为
H ( s ) = v o v i = a ( s ) 1 + a ( s ) f ( s ) = a ( s ) 1 + T ( s ) = 1 f ( s ) ⋅ T ( s ) 1 + T ( s ) \begin{equation} H(s) = \frac{v_o}{v_i}=\frac{a(s)}{1+a(s)f(s)}=\frac{a(s)}{1+T(s)}=\frac{1}{f(s)}\cdot\frac{T(s)}{1+T(s)} \end{equation} H(s)=vivo=1+a(s)f(s)a(s)=1+T(s)a(s)=f(s)11+T(s)T(s)
( 1 ) (1) (1)中环路增益可以表示为
T ( s ) = a ( s ) ⋅ f ( s ) T(s)=a(s)\cdot f(s) T(s)=a(s)f(s)
闭环系统的稳定性分析在于环路,即 T ( s ) T(s) T(s)的性质。根据Barkhausen稳定性判据,当
∠ T ( s ) = − 180 ° ∣ T ( s ) ∣ > 1 \angle T(s)=-180\degree \\ |T(s)|>1 T(s)=180°T(s)>1
时,环路不再稳定。从稳定性和建立速度的角度,通常要求环路的增益裕度GM为3-5,相位裕度为 60 ° 60\degree 60°~ 70 ° 70\degree 70°

2.开关电容电路

基于OTA的开关电容积分器和放大器如下图所示(Ref: Murmann’s Slide):
Ref: Murmann's Slides
开关电容积分器(放大器)在积分(放大)相位的单端等效电路如图所示(Ref: Nan Sun’s Slide):
开关电容积分器单端等效电路
利用返回比(Return Ratio)分析方法,将电路中所有独立源置零,断开环路中的受控源,并添加激励信号,计算受控源的响应,返回比可以表示为
R e t u r n   R a t i o = − s r e t u r n s t e s t \begin{equation} Return \ Ratio = -\frac{s_{return}}{s_{test}} \end{equation} Return Ratio=stestsreturn
输入源为独立源,输入接地;受控源为压控电流源,将其与输出断开;在断开的位置添加一个激励信号,由于受控源为电流源,因此添加电流激励 i t i_t it。闭环单级OTA的返回比计算小信号模型如下图所示
在这里插入图片描述
虚地点电压 v x v_x vx可以表示为
v x = C f C f + C s + C p a r ⋅ v o = β v o = β ⋅ [ − i t ⋅ ( R L / / 1 s C L t o t ) ] \begin{equation} v_x = \frac{C_f}{C_f+C_s+C_{par}}\cdot v_o=\beta v_o=\beta \cdot[-i_t\cdot(R_L//\frac{1}{sC_{Ltot}})] \end{equation} vx=Cf+Cs+CparCfvo=βvo=β[it(RL//sCLtot1)]
其中反馈系数(feedback factor) β \beta β
β = C f C f + C s + C p a r \begin{equation} \beta = \frac{C_f}{C_f+C_s+C_{par}} \end{equation} β=Cf+Cs+CparCf
C L t o t C_{Ltot} CLtot为从输出端看到的总的负载电容,表示为 C f C_f Cf串联( C s C_s Cs并联 C p a r C_{par} Cpar),然后并联 C L C_L CL,表达式为
C L t o t = C L + C f ⋅ ( C s + C p a r ) C f + C s + C p a r = C L + ( 1 − β ) ⋅ C f \begin{equation} C_{Ltot} = C_L+\frac{C_f\cdot(C_s+C_{par})}{C_f+C_s+C_{par}}=C_L+(1-\beta)\cdot C_f \end{equation} CLtot=CL+Cf+Cs+CparCf(Cs+Cpar)=CL+(1β)Cf
环路增益(返回比)可以表示为
T ( s ) = − i r i t = − G m ⋅ v x i t = β ⋅ G m R L 1 + s R L C L t o t = β ⋅ G m R L 1 + s R L [ C L + ( 1 − β ) ⋅ C f ] \begin{equation} T(s)=-\frac{i_r}{i_t}=-\frac{G_m\cdot v_x}{i_t}=\beta\cdot\frac{G_mR_L}{1+sR_LC_{Ltot}}=\beta\cdot\frac{G_mR_L}{1+sR_L[C_L+(1-\beta)\cdot C_f]} \end{equation} T(s)=itir=itGmvx=β1+sRLCLtotGmRL=β1+sRL[CL+(1β)Cf]GmRL
由此可见,单级运放的环路传递函数中包含一个极点。当频率非常高时,环路增益可以简化为
T ( s ) ∣ s   i s   h i g h ≈ β ⋅ G m s C L t o t = ω c s \begin{equation} T(s)|_{s\ is\ high}\approx\beta\cdot\frac{G_m}{sC_{Ltot}}=\frac{\omega_c}{s} \end{equation} T(s)s is highβsCLtotGm=sωc
其中 ω c \omega_c ωc为拐点频率(同时也是T(s)的单位增益带宽 ω u g b \omega_{ugb} ωugb
ω u g b = β ⋅ G m C L t o t \begin{equation} \omega_{ugb}=\frac{\beta\cdot G_m}{C_{Ltot}} \end{equation} ωugb=CLtotβGm

3.闭环等效

由式 ( 1 ) (1) (1),闭环运放的传递函数可以表示为
H ( s ) = 1 f ( s ) ⋅ T ( s ) 1 + T ( s ) H(s) =\frac{1}{f(s)}\cdot\frac{T(s)}{1+T(s)} H(s)=f(s)11+T(s)T(s)
其中 1 f ( s ) \frac{1}{f(s)} f(s)1为环路增益无穷大时的理想闭环增益,计算原理图如下所示
在这里插入图片描述
当环路增益无穷大时,虚地点 v x v_x vx严格为0,同时有
( v i − v x ) ⋅ s C s = ( v x − v 0 ) ⋅ s C f (v_i-v_x)\cdot sC_s=(v_x-v_0)\cdot sC_f (vivx)sCs=(vxv0)sCf
解得
1 f ( s ) = v o v i = − C s C f \begin{equation} \frac{1}{f(s)}=\frac{v_o}{v_i}=-\frac{C_s}{C_f} \end{equation} f(s)1=vivo=CfCs
闭环运放的DC增益为
H ( 0 ) = 1 f ( 0 ) ⋅ T ( 0 ) 1 + T ( 0 ) = − C s C f ⋅ β ⋅ G m R L 1 + β ⋅ G m R L = − C s C f ⋅ 1 1 + 1 β ⋅ G m R L \begin{equation} H(0)=\frac{1}{f(0)}\cdot \frac{T(0)}{1+T(0)}=-\frac{C_s}{C_f}\cdot\frac{\beta\cdot G_mR_L}{1+\beta\cdot G_mR_L}=-\frac{C_s}{C_f}\cdot\frac{1}{1+\frac{1}{\beta\cdot G_mR_L}} \end{equation} H(0)=f(0)11+T(0)T(0)=CfCs1+βGmRLβGmRL=CfCs1+βGmRL11
静态增益误差为
∣ ϵ 0 ∣ = ∣ H ( 0 ) − 1 / f ( 0 ) 1 / f ( 0 ) ∣ = ∣ T ( 0 ) 1 + T ( 0 ) − 1 ∣ ≈ 1 T ( 0 ) = 1 β ⋅ G m R L \begin{equation} |\epsilon_0|=|\frac{H(0)-1/f(0)}{1/f(0)}|=|\frac{T(0)}{1+T(0)}-1|\approx\frac{1}{T(0)}=\frac{1}{\beta\cdot G_mR_L} \end{equation} ϵ0=1/f(0)H(0)1/f(0)=1+T(0)T(0)1∣T(0)1=βGmRL1
由式(7),随着频率增加,环路增益下降,闭环增益也随之下降,高频处的闭环增益可以表示为
∣ H ( j ω ) ∣ = ∣ 1 f ⋅ T ( s ) 1 + T ( s ) ∣ = C s C f ⋅ ∣ ω c / s 1 + ω c / s ∣ = C s C f ⋅ ω c ω 2 + ω c 2 \begin{equation} |H(j\omega)| =|\frac{1}{f}\cdot\frac{T(s)}{1+T(s)}|=\frac{C_s}{C_f}\cdot |\frac{\omega_c/s}{1+\omega_c/s}|=\frac{C_s}{C_f}\cdot \frac{\omega_c}{\sqrt{\omega^2+\omega_c^2}} \end{equation} H()=f11+T(s)T(s)=CfCs1+ωc/sωc/s=CfCsω2+ωc2 ωc
当频率为 ω = ω c ( ω u g b ) \omega=\omega_c(\omega_{ugb}) ω=ωc(ωugb)时,闭环增益下降为 ∣ H ( 0 ) ∣ |H(0)| H(0) 1 / 2 1/\sqrt2 1/2 ,即环路的单位增益带宽对应闭环系统的-3dB带宽,即
f − 3 d B = 1 2 π ⋅ β G m C L t o t \begin{equation} f_{-3dB}=\frac{1}{2\pi}\cdot \frac{\beta G_m}{C_{Ltot}} \end{equation} f3dB=2π1CLtotβGm
单级OTA的增益带宽积(GBW)可以表示为
G B W O T A = G m R L ⋅ 1 2 π R L C L t o t = 1 2 π ⋅ G m C L t o t \begin{equation} GBW_{OTA}=G_mR_L\cdot\frac{1}{2\pi R_LC_{Ltot}}=\frac{1}{2\pi}\cdot \frac{ G_m}{C_{Ltot}} \end{equation} GBWOTA=GmRL2πRLCLtot1=2π1CLtotGm
则环路的-3dB带宽也可以表示为
f − 3 d B = β ⋅ G B W O T A \begin{equation} f_{-3dB}= \beta\cdot GBW_{OTA} \end{equation} f3dB=βGBWOTA
根据以上分析,可以对开关电容闭环运放作单极点等效
H ( s ) = H ( 0 ) 1 + s 2 π f − 3 d B = H ( 0 ) 1 + s β G m / C L t o t = H ( 0 ) 1 + s τ \begin{equation} H(s)=\frac{H(0)}{1+\frac{s}{2\pi f_{-3dB}}}=\frac{H(0)}{1+\frac{s}{\beta G_m/C_{Ltot}}}=\frac{H(0)}{1+s\tau} \end{equation} H(s)=1+2πf3dBsH(0)=1+βGm/CLtotsH(0)=1+sτH(0)
上式中闭环运放建立时间常数为
τ = 1 β G m ⋅ C L t o t \begin{equation} \tau=\frac{1}{\beta G_m}\cdot C_{Ltot} \end{equation} τ=βGm1CLtot
第一项为闭环运放输出端看过去的等效阻抗,第二项为输出端的等效负载电容。
以上推导中忽略了电容前馈的影响,在高频时,输入信号通过反馈电容前馈到输出端,当OTA中的跨导电流与前馈电流完全抵消时,OTA输出电压为0,即产生了一个零点。
在这里插入图片描述
在输出节点,根据KCL,零点的位置满足
v x ⋅ G m = ( v x − 0 ) ⋅ s C f v_x\cdot G_m=(v_x-0)\cdot sC_f vxGm=(vx0)sCf
解得右半平面的零点为
ω z = G m C f \omega_z=\frac{G_m}{C_f} ωz=CfGm
对比左半平面的极点为
ω p = ω c = β G m C L t o t \omega_p=\omega_c=\frac{\beta G_m}{C_{Ltot}} ωp=ωc=CLtotβGm
当反馈电容 C f C_f Cf较小时,这个零点通常远远高于极点的频率。对于积分器的情况,由于反馈电容 C f C_f Cf通常较大,零点位置会远低于极点。考虑前馈电容导致的零点后的闭环运放传递函数改写为
H ( s ) = H ( 0 ) ⋅ 1 − s / ω z 1 + s / ω p = − C s C f ⋅ [ 1 − 1 T ( 0 ) ] ⋅ 1 − s G m / C f 1 + s β G m / C L t o t \begin{equation} H(s)=H(0)\cdot\frac{1-s/\omega_z}{1+s/\omega_p}=-\frac{C_s}{C_f}\cdot[1-\frac{1}{T(0)}]\cdot\frac{1-\frac{s}{G_m/C_f}}{1+\frac{s}{\beta G_m/C_{Ltot}}} \end{equation} H(s)=H(0)1+s/ωp1s/ωz=CfCs[1T(0)1]1+βGm/CLtots1Gm/Cfs

另一种输入结构

以上的闭环传递函数的推导中,输入位于采样电容的左侧;对于输入位于运放另一侧的情况(通常用于噪声计算),小信号等效模型如下图所示
在这里插入图片描述
当增益为无穷大时,虚地点电压 v x v_x vx严格等于输入 v i v_i vi,则有
v i = C f C s + C f + C p a r ⋅ v o v_i=\frac{C_f}{C_s+C_f+C_{par}}\cdot v_o \\ vi=Cs+Cf+CparCfvo
解得
1 f ( s ) = 1 + C s + C p a r C f = 1 / β \frac{1}{f(s)}=1+\frac{C_s+C_{par}}{C_f}=1/\beta f(s)1=1+CfCs+Cpar=1/β
环路的计算与前文一致,基于此输入模式的运放闭环传递函数可以表示为
H ( s ) = H ( 0 ) 1 + s τ = 1 β ⋅ [ 1 − 1 T ( 0 ) ] ⋅ 1 1 + s τ \begin{equation} H(s)=\frac{H(0)}{1+s\tau}=\frac{1}{\beta}\cdot[1-\frac{1}{T(0)}]\cdot\frac{1}{1+s\tau} \end{equation} H(s)=1+sτH(0)=β1[1T(0)1]1+sτ1

4.线性建立

首先忽略前馈零点的影响,采用单极点闭环等效,即
H ( s ) = H ( 0 ) 1 + s 2 π f − 3 d B = H ( 0 ) 1 + s τ \begin{equation} H(s)=\frac{H(0)}{1+\frac{s}{2\pi f_{-3dB}}}=\frac{H(0)}{1+s\tau} \end{equation} H(s)=1+2πf3dBsH(0)=1+sτH(0)
运放输入端加入幅度为 V s t e p V_{step} Vstep的阶跃信号后,输出端的时域表达式可以通过拉普拉斯反变换求解,即
V o u t ( t ) = L − 1 [ H ( s ) ⋅ V s t e p s ] = H ( 0 ) ⋅ V s t e p ⋅ L − 1 [ 1 1 + s τ ⋅ 1 s ] = H ( 0 ) ⋅ V s t e p ⋅ ( 1 − e − t τ ) = − C s C f ⋅ V s t e p ⋅ [ 1 − 1 T ( 0 ) ] ⋅ ( 1 − e − t τ ) \begin{align} V_{out}(t)&=\mathcal{L^{-1}}[H(s)\cdot \frac{V_{step}}{s}]=H(0)\cdot V_{step}\cdot\mathcal{L^{-1}}[\frac{1}{1+s\tau}\cdot \frac{1}{s}]=H(0)\cdot V_{step}\cdot(1-e^{-\frac{t}{\tau}}) \\ &=-\frac{C_s}{C_f}\cdot V_{step}\cdot [1-\frac{1}{T(0)}]\cdot(1-e^{-\frac{t}{\tau}}) \end{align} Vout(t)=L1[H(s)sVstep]=H(0)VstepL1[1+sτ1s1]=H(0)Vstep(1eτt)=CfCsVstep[1T(0)1](1eτt)
其中
L − 1 [ 1 1 + s τ ⋅ 1 s ] = L − 1 [ 1 s − τ 1 + s τ ] = L − 1 [ 1 s − 1 s − ( − 1 / τ ) ] = u ( t ) ⋅ ( 1 − e − t τ ) \mathcal{L^{-1}}[\frac{1}{1+s\tau}\cdot \frac{1}{s}]=\mathcal{L^{-1}}[\frac{1}{s}-\frac{\tau}{1+s\tau}]=\mathcal{L^{-1}}[\frac{1}{s}-\frac{1}{s-(-1/\tau)}]=u(t)\cdot(1-e^{-\frac{t}{\tau}}) L1[1+sτ1s1]=L1[s11+sττ]=L1[s1s(1/τ)1]=u(t)(1eτt)
由时域表达式,OTA的有限直流增益引入静态建立误差,有限GBW引入动态建立误差,如下图所示
在这里插入图片描述
动态建立误差为
ϵ d = 1 − ( 1 − e − t τ ) ∣ t = t s e t t l e = e − t s e t t l e τ \epsilon_d=1-(1-e^{-\frac{t}{\tau}})|_{t=t_{settle}}=e^{-\frac{t_{settle}}{\tau}} ϵd=1(1eτt)t=tsettle=eτtsettle
其中 t s e t t l e t_{settle} tsettle为建立时间,可以等价得表示为
t s e t t l e = − τ ⋅ ln ⁡ ϵ d t_{settle}=-\tau\cdot\ln \epsilon_d tsettle=τlnϵd
常见的建立时间要求如下表格所示

ϵ d \epsilon_d ϵd t s e t t l e / τ t_{settle}/{\tau} tsettle/τ
10%2.3
1%4.6
0.1%6.9
0.01%9.2
1 0 − 6 10^{-6} 10613.8

假设运放的阶跃建立过程完全线性,对于一个N-bit精度的系统,采样频率为 f s f_s fs,时钟周期一半时间为建立时间,并且要求动态建立误差不超过1/2LSB,则需要满足
e − 1 2 ⋅ t s τ = e − 1 2 ⋅ 1 f s 1 2 π ⋅ f − 3 d B < 1 2 ⋅ 1 2 N e^{-\frac{\frac{1}{2}\cdot t_s}{\tau}}=e^{-\frac{\frac{1}{2}\cdot \frac{1}{f_s}}{\frac{1}{2\pi \cdot f_{-3dB}}}}<\frac{1}{2}\cdot\frac{1}{2^N} eτ21ts=e2πf3dB121fs1<212N1
解得
t s > 2 ⋅ ( N + 1 ) ⋅ ln ⁡ 2 ⋅ τ f − 3 d B = β ⋅ f G B W O T A > ( N + 1 ) π ⋅ ln ⁡ 2 ⋅ f s \begin{align} &t_s>2\cdot(N+1)\cdot\ln2\cdot\tau \\ &f_{-3dB}=\beta\cdot f_{GBW_{OTA}}>\frac{(N+1)}{\pi}\cdot\ln2\cdot f_s \end{align} ts>2(N+1)ln2τf3dB=βfGBWOTA>π(N+1)ln2fs
其中ln2 = 0.7,对于24bit的建立精度,要求
t s > 2 ⋅ 17.3 τ β ⋅ f G B W O T A > 5.7 ⋅ f s \begin{align} &t_s>2\cdot17.3\tau \\ &\beta\cdot f_{GBW_{OTA}}>5.7\cdot f_s \end{align} ts>217.3τβfGBWOTA>5.7fs
每提高1bit的建立精度要求,对运放的带宽要求提高0.22 f s f_s fs

电容前馈的影响

当采样电容左侧开关闭合后,相当于在闭环运放输入端加入一个阶跃信号,在高频下,电阻视作断路,闭环运放等效为一个电容分压网络,如下图所示。
在这里插入图片描述
阶跃输入在OTA输入端分压产生的前馈量 V x s t e p V_{xstep} Vxstep完全由电容分压决定
V x s t e p = V i s t e p ⋅ C s C s + C p a r + C f C L C f + C L \begin{equation} V_{xstep}=V_{istep}\cdot\frac{C_s}{C_s+C_{par}+\frac{C_fC_L}{C_f+C_L}} \end{equation} Vxstep=VistepCs+Cpar+Cf+CLCfCLCs
运放输出端产生的前馈量为
V o s t e p V i s t e p = V o s t e p V x s t e p ⋅ V x s t e p V i s t e p = C f C f + C L ⋅ C s C s + C p a r + C f C L C f + C L = C s C f ⋅ β C f C L + ( 1 − β ) C f = C s C f ⋅ k f \begin{align} \frac{V_{ostep}}{V_{istep}}=\frac{V_{ostep}}{V_{xstep}}\cdot\frac{V_{xstep}}{V_{istep}}&=\frac{C_f}{C_f+C_L}\cdot\frac{C_s}{C_s+C_{par}+\frac{C_fC_L}{C_f+C_L}}=\frac{C_s}{C_f}\cdot\frac{\beta C_f}{C_L+(1-\beta)C_f}\\&=\frac{C_s}{C_f}\cdot k_f \end{align} VistepVostep=VxstepVostepVistepVxstep=Cf+CLCfCs+Cpar+Cf+CLCfCLCs=CfCsCL+(1β)CfβCf=CfCskf
上式中 k f = β C f C L + ( 1 − β ) C f k_f=\frac{\beta C_f}{C_L+(1-\beta)C_f} kf=CL+(1β)CfβCf为前馈电压系数,由上一小节,考虑电容前馈影响后的闭环运放传递函数为
H ( s ) = − C s C f ⋅ [ 1 − 1 T ( 0 ) ] ⋅ 1 − s / ω z 1 + s / ω p H(s)=-\frac{C_s}{C_f}\cdot[1-\frac{1}{T(0)}]\cdot\frac{1-s/\omega_z}{1+s/\omega_p} H(s)=CfCs[1T(0)1]1+s/ωp1s/ωz
则输入为 V i s t e p V_{istep} Vistep时,输出电压时域表达式为
V o u t ( t ) = L − 1 [ H ( s ) ⋅ V i s t e p s ] = − V i s t e p ⋅ C s C f ⋅ [ 1 − 1 T ( 0 ) ] ⋅ [ 1 − e − t τ ⋅ ( 1 + ω p ω z ) ] \begin{equation} V_{out}(t)=\mathcal{L^{-1}}[H(s)\cdot\frac{V_{istep}}{s}]=-V_{istep}\cdot\frac{C_s}{C_f}\cdot[1-\frac{1}{T(0)}]\cdot[1-e^{-\frac{t}{\tau}}\cdot(1+\frac{\omega_p}{\omega_z})] \end{equation} Vout(t)=L1[H(s)sVistep]=VistepCfCs[1T(0)1][1eτt(1+ωzωp)]
其中
1 + ω p ω z = 1 + β G m C L t o t / G m C f = C L + C f C L + ( 1 − β ) C f = 1 + k f > 1 1+\frac{\omega_p}{\omega_z}=1+\frac{\beta G_m}{C_{Ltot}}/\frac{G_m}{C_f}=\frac{C_L+C_f}{C_L+(1-\beta)C_f}=1+k_f>1 1+ωzωp=1+CLtotβGm/CfGm=CL+(1β)CfCL+Cf=1+kf>1
即前馈电压系数恰好等于极点与零点的比值,动态建立误差为
ϵ d = 1 − [ 1 − e − t τ ⋅ ( 1 + ω p ω z ) ] = e − t τ ⋅ ( 1 + ω p ω z ) = e − t τ ⋅ ( 1 + k f ) \epsilon_d=1-[1-e^{-\frac{t}{\tau}}\cdot(1+\frac{\omega_p}{\omega_z})]=e^{-\frac{t}{\tau}}\cdot(1+\frac{\omega_p}{\omega_z})=e^{-\frac{t}{\tau}}\cdot(1+k_f) ϵd=1[1eτt(1+ωzωp)]=eτt(1+ωzωp)=eτt(1+kf)
电容前馈导致动态建立误差提高。等价得可以得到建立时间与建立精度的关系为
t = − τ ⋅ ln ⁡ ( ϵ d 1 + k f ) = τ ⋅ [ ( N + 1 ) ln ⁡ 2 + ln ⁡ ( 1 + k f ) ] t=-\tau\cdot\ln(\frac{\epsilon_d}{1+k_f})=\tau\cdot[(N+1)\ln{2}+\ln(1+k_f)] t=τln(1+kfϵd)=τ[(N+1)ln2+ln(1+kf)]

5.压摆建立

对于全差分NMOS输入对运放,且输入管均工作在饱和区时,根据长沟道平方律关系
V i n 1 − V i n 2 = V G S 1 − V G S 2 = 2 I D 1 μ n C o x W L + V T H − ( 2 I D 2 μ n C o x W L + V T H ) \begin{equation} V_{in1}-V_{in2}=V_{GS1}-V_{GS2}=\sqrt{\frac{2I_{D1}}{\mu_nC_{ox}\frac{W}{L}}}+V_{TH}-(\sqrt{\frac{2I_{D2}}{\mu_nC_{ox}\frac{W}{L}}}+V_{TH}) \end{equation} Vin1Vin2=VGS1VGS2=μnCoxLW2ID1 +VTH(μnCoxLW2ID2 +VTH)
输入管电流满足关系式 I D 1 + I D 2 = I S S I_{D1}+I_{D2}=I_{SS} ID1+ID2=ISS,对上式两侧取平方
( V i n 1 − V i n 1 ) 2 = 2 μ n C o x W L ( I S S − 2 I D 1 I D 2 ) (V_{in1}-V_{in1})^2=\frac{2}{\mu_nC_{ox}\frac{W}{L}}(I_{SS}-2\sqrt{I_{D1}I_{D2}}) (Vin1Vin1)2=μnCoxLW2(ISS2ID1ID2 )
同时有式子
4 I D 1 I D 2 = ( I D 1 + I D 2 ) 2 − ( I D 1 − I D 2 ) 2 = I S S 2 − ( I D 1 − I D 2 ) 2 4I_{D1}I_{D2}=(I_{D1}+I_{D2})^2-(I_{D1}-I_{D2})^2=I_{SS}^2-(I_{D1}-I_{D2})^2 4ID1ID2=(ID1+ID2)2(ID1ID2)2=ISS2(ID1ID2)2
则上式可以解得
( I D 1 − I D 2 ) 2 = − 1 4 ( μ n C o x W L ) 2 ⋅ ( V i n 1 − V i n 2 ) 4 + I S S ⋅ μ n C o x W L ⋅ ( V i n 1 − V i n 2 ) 2 (I_{D1}-I_{D2})^2=-\frac{1}{4}(\mu_nC_{ox}\frac{W}{L})^2\cdot(V_{in1}-V_{in2})^4+I_{SS}\cdot\mu_nC_{ox}\frac{W}{L}\cdot(V_{in1}-V_{in2})^2 (ID1ID2)2=41(μnCoxLW)2(Vin1Vin2)4+ISSμnCoxLW(Vin1Vin2)2
I D 1 − I D 2 = μ n C o x W L I S S ⋅ ( V i n 1 − V i n 2 ) ⋅ 1 − μ n C o x W L 4 I S S ⋅ ( V i n 1 − V i n 2 ) 2 I_{D1}-I_{D2}=\sqrt{\mu_nC_{ox}\frac{W}{L}I_{SS}}\cdot(V_{in1}-V_{in2})\cdot\sqrt{1-\frac{\mu_nC_{ox}\frac{W}{L}}{4I_{SS}}\cdot(V_{in1}-V_{in2})^2} ID1ID2=μnCoxLWISS (Vin1Vin2)14ISSμnCoxLW(Vin1Vin2)2
差分输入为0时,两个输入管电流均为尾电流的一半,得到全差分运放的平衡态跨导
g m = ∂ I o d ∂ V i d ∣ V i d → 0 = lim ⁡ V i d → 0 I D 1 − I D 2 V i n 1 − V i n 2 = 2 μ n C o x W L I D S = μ n C o x W L I S S g_m=\frac{\partial I_{od}}{\partial V_{id}}|_{V_{id}\to 0}=\lim_{V_{id}\to0}\frac{I_{D1}-I_{D2}}{V_{in1}-V_{in2}}=\sqrt{2\mu_nC_{ox}\frac{W}{L}I_{DS}}=\sqrt{\mu_nC_{ox}\frac{W}{L}I_{SS}} gm=VidIodVid0=Vid0limVin1Vin2ID1ID2=2μnCoxLWIDS =μnCoxLWISS
此时输入管的过驱动电压为
V o v = 2 I D g m = I S S g m V_{ov}=\frac{2I_D}{g_m}=\frac{I_{SS}}{g_m} Vov=gm2ID=gmISS
当差分输入电压为大信号时,使得只有一端的输入管开启,另一侧输入管截止,此时恰好满足 V G S 2 = V T H V_{GS2}=V_{TH} VGS2=VTH,则差分输入为
Δ V i n t 1 = 2 I S S μ n C o x W L = 2 ⋅ I S S g m \Delta V_{int1}=\sqrt{\frac{2I_{SS}}{\mu_nC_{ox}\frac{W}{L}}}=\sqrt{2}\cdot\frac{I_{SS}}{g_m} ΔVint1=μnCoxLW2ISS =2 gmISS
即压摆发生时的输入电压只差为平衡态过驱动电压的 2 \sqrt{2} 2 倍。
当差分输入电压绝对值超过 Δ V i n t 1 \Delta V_{int1} ΔVint1时,输出差分电流表达式不再成立。此时平衡态跨导为0,电路不具备压控电流源的能力,即超出工作范围。将平衡态跨导表达式带入,差分电流表达式可以重写为
I o d = g m V i d ⋅ 1 − g m 2 4 I S S 2 ⋅ V i d 2 \begin{equation} I_{od}=g_mV_{id}\cdot\sqrt{1-\frac{g_m^2}{4I_{SS}^2}\cdot V_{id}^2} \end{equation} Iod=gmVid14ISS2gm2Vid2
I o d I S S = V i d I S S / g m ⋅ 1 − 1 4 ⋅ ( V i d I S S / g m ) 2 \begin{equation} \frac{I_{od}}{I_{SS}}=\frac{V_{id}}{I_{SS}/g_m}\cdot\sqrt{1-\frac{1}{4}\cdot(\frac{V_{id}}{I_{SS}/g_m})^2} \end{equation} ISSIod=ISS/gmVid141(ISS/gmVid)2
V i d I S S / g m \frac{V_{id}}{I_{SS}/g_m} ISS/gmVid为x轴, I o d I S S \frac{I_{od}}{I_{SS}} ISSIod为y轴,绘制曲线得
在这里插入图片描述
因此压摆建立的工作区间为
∣ V i d ∣ > 2 ⋅ I S S g m |V_{id}|>\sqrt{2}\cdot\frac{I_{SS}}{g_m} Vid>2 gmISS
输入管gm/id越大,越容易进入压摆区间。运放输入差分电压超过 2 ⋅ I S S g m \sqrt{2}\cdot\frac{I_{SS}}{g_m} 2 gmISS时,运放首先压摆建立时,运放输出电流由尾电流决定,当脱离压摆工作区间时,运放回归线性建立,建立过程中虚地点电压和输出差分电流如下图所示。
在这里插入图片描述
运放压摆率为
S R = ∂ V o d ∂ t = I S S C L t o t SR = \frac{\partial V_{o d}}{\partial t} = \frac{I_{S S}}{C_{L t o t}} SR=tVod=CLtotISS
输入端电压变化速度为 β ⋅ S R \beta\cdot SR βSR。当运放输入的电压阶跃为 V x s t e p V_{xstep} Vxstep( V x s t e p V_{xstep} Vxstep为负值)时,运放压摆的工作时间为
t s l e w = ∣ V x s t e p ∣ − 2 ⋅ I S S g m β ⋅ S R = − V x s t e p + 2 2 ⋅ I D g m β ⋅ S R t_{slew} = \frac{\left|V_{x s t e p}\right| - \sqrt{2} \cdot \frac{I_{S S}}{g_{m}}}{\beta \cdot S R} = - \frac{V_{x s t e p} + 2 \sqrt{2} \cdot \frac{I_{D}}{g_{m}}}{\beta \cdot SR} tslew=βSRVxstep2 gmISS=βSRVxstep+22 gmID
完成压摆建立后,运放输出电压为
V o s l e w = S R ⋅ t s l e w + v o s t e p = − S R ⋅ ( V x s t e p + 2 ⋅ I S S g m β ⋅ S R ) + C s C f ⋅ β C f C L + ( 1 − β ) C f ⋅ V i s t e p = − 1 β ( V x s t e p + 2 ⋅ I s s g m ) + C s C f ⋅ k f ⋅ V i s t e p \begin{align} V_{o s l e w} &= S R \cdot t_{s l e w} + v_{o s t e p} = - S R \cdot \left(\frac{V_{x s t e p} + \sqrt{2} \cdot \frac{I_{S S}}{g_{m}}}{\beta \cdot S R}\right) + \frac{C_{s}}{C_{f}} \cdot \frac{\beta C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} \cdot V_{i s t e p} \\ &= - \frac{1}{\beta} \left(V_{x s t e p} + \sqrt{2} \cdot \frac{I_{s s}}{g_{m}}\right) + \frac{C_{s}}{C_{f}} \cdot k_f\cdot V_{i s t e p} \end{align} Voslew=SRtslew+vostep=SR(βSRVxstep+2 gmISS)+CfCsCL+(1β)CfβCfVistep=β1(Vxstep+2 gmIss)+CfCskfVistep
运放输入从0完全线性建立到该输出电压的等效建立时间 t l i n , e q t_{lin,eq} tlin,eq可通过动态建立误差计算,即
d y n a m i c   e r r o r = C L + C f C L + ( 1 − β ) C f ⋅ e − t l i n , e q τ = − C s C f ⋅ V i s t e p − V o s l e w − C s C f ⋅ V i s t e p = 1 + S R ⋅ t s l e w + v o s t e p C s C f ⋅ V i s t e p d y n a m i c \textrm{ } e r r o r = \frac{C_{L} + C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} \cdot e^{- \frac{t_{l i n , e q}}{\tau}} = \frac{- \frac{C_{s}}{C_{f}} \cdot V_{i s t e p} - V_{o s l e w}}{- \frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} = 1 + \frac{S R \cdot t_{s l e w} + v_{o s t e p}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} dynamic error=CL+(1β)CfCL+Cfeτtlin,eq=CfCsVistepCfCsVistepVoslew=1+CfCsVistepSRtslew+vostep
上式子中,
v o s t e p = C s C f ⋅ β C f C L + ( 1 − β ) C f ⋅ v i s t e p v_{o s t e p} = \frac{C_{s}}{C_{f}} \cdot \frac{\beta C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} \cdot v_{i s t e p} vostep=CfCsCL+(1β)CfβCfvistep
上式可以改写为
C L + C f C L + ( 1 − β ) C f ⋅ e − t l i n , e q τ = 1 + β C f C L + ( 1 − β ) C f + S R ⋅ t s l e w C s C f ⋅ V i s t e p = ( 1 + k f ) − S R ⋅ t s l e w C s C f ⋅ V i s t e p \frac{C_{L} + C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} \cdot e^{- \frac{t_{l i n , e q}}{\tau}} = 1 + \frac{\beta C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} + \frac{S R \cdot t_{s l e w}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} =(1+k_f) - \frac{S R \cdot t_{s l e w}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} CL+(1β)CfCL+Cfeτtlin,eq=1+CL+(1β)CfβCf+CfCsVistepSRtslew=(1+kf)CfCsVistepSRtslew
e − t l i n , e q τ = 1 − C L + ( 1 − β ) C f C f + C L ⋅ S R ⋅ t s l e w C s C f ⋅ V i s t e p = 1 − ( 1 − β C f C f + C L ) ⋅ 1 β ( V x s t e p + 2 ⋅ I s s g m ) C s C f ⋅ V i s t e p e^{- \frac{t_{l i n , e q}}{\tau}} = 1 - \frac{C_{L} + \left(1 - \beta\right) C_{f}}{C_{f} + C_{L}} \cdot \frac{S R \cdot t_{s l e w}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} = 1 - \left(1 - \beta \frac{C_{f}}{C_{f} + C_{L}}\right) \cdot \frac{\frac{1}{\beta} \left(V_{x s t e p} + \sqrt{2} \cdot \frac{I_{s s}}{g_{m}}\right)}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} eτtlin,eq=1Cf+CLCL+(1β)CfCfCsVistepSRtslew=1(1βCf+CLCf)CfCsVistepβ1(Vxstep+2 gmIss)
t l i n , e q = − τ ⋅ l n ⁡ ( 1 − C L + ( 1 − β ) C f C f + C L ⋅ S R ⋅ t s l e w C s C f ⋅ V i s t e p ) = − τ ⋅ l n ⁡ ( 1 − ( 1 − β C f C f + C L ) ⋅ 1 β ( V x s t e p + 2 ⋅ I s s g m ) C s C f ⋅ V i s t e p ) t_{l i n , e q} = - \tau \cdot ln ⁡ \left(1 - \frac{C_{L} + \left(1 - \beta\right) C_{f}}{C_{f} + C_{L}} \cdot \frac{S R \cdot t_{s l e w}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}}\right) = - \tau \cdot ln ⁡ \left(1 - \left(1 - \beta \frac{C_{f}}{C_{f} + C_{L}}\right) \cdot \frac{\frac{1}{\beta} \left(V_{x s t e p} + \sqrt{2} \cdot \frac{I_{s s}}{g_{m}}\right)}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}}\right) tlin,eq=τln(1Cf+CLCL+(1β)CfCfCsVistepSRtslew)=τln 1(1βCf+CLCf)CfCsVistepβ1(Vxstep+2 gmIss)
运放脱离压摆后的线性建立时间为
τ ⋅ [ ( N + 1 ) l n ⁡ 2 + l n ⁡ ( 1 + k f ) ] − t l i n , e q \tau \cdot \left[\left(N + 1\right) ln ⁡ 2 + ln ⁡ \left(1+k_f\right)\right] - t_{l i n , e q} τ[(N+1)ln⁡2+ln(1+kf)]tlin,eq
总建立时间为
t s l e w + τ ⋅ [ ( N + 1 ) l n ⁡ 2 + l n ⁡ ( 1 + k f ) ] − t l i n , e q t_{s l e w} + \tau \cdot \left[\left(N + 1\right) ln ⁡ 2 + ln ⁡ \left(1+k_f\right)\right] - t_{l i n , e q} tslew+τ[(N+1)ln⁡2+ln(1+kf)]tlin,eq
注意到,当闭环放大器输入加入 V i s t e p V_{istep} Vistep的阶跃后,OTA输入端电压变化为
V x s t e p = C s C s + C i n + C f C L C f + C L ⋅ V i s t e p < V i s t e p V_{x s t e p} = \frac{C_{s}}{C_{s} + C_{i n} + \frac{C_{f} C_{L}}{C_{f} + C_{L}}} \cdot V_{i s t e p} < V_{i s t e p} Vxstep=Cs+Cin+Cf+CLCfCLCsVistep<Vistep
当闭环增益(H(0))足够大时,
V o s w i n g H ( 0 )   > V i s t e p > V x s t e p \frac{V_{o s w i n g}}{H(0) \textrm{ }} > V_{i s t e p} > V_{x s t e p} H(0) Voswing>Vistep>Vxstep
2 ⋅ I S S g m > V o s w i n g H ( 0 )   \sqrt{2} \cdot \frac{I_{S S}}{g_{m}} > \frac{V_{o s w i n g}}{H(0) \textrm{ }} 2 gmISS>H(0) Voswing,即满足
g m I D = 2 V o v < 2 2 ⋅ H ( 0 ) V o s w i n g \frac{g_{m}}{I_{D}} = \frac{2}{V_{o v}} < 2 \sqrt{2} \cdot \frac{H(0)}{V_{o s w i n g}} IDgm=Vov2<22 VoswingH(0)
V o v > 1 2 H ( 0 ) ⋅ V o s w i n g V_{o v} > \frac{1}{\sqrt{2} H(0)} \cdot V_{o s w i n g} Vov>2 H(0)1Voswing
运放不会进入压摆的状态。

6.虚地点电压

假设建立过程中,OTA栅端始终不存在瞬态电流,则阶跃电压加入的瞬间,各个节点的瞬态压降由电容分压决定(认为运放尚未开始工作),电容网络如下图所示
在这里插入图片描述
根据KCL
( V i − V s ) ⋅ s C s = V x ⋅ C p a r + ( V x − V o ) ⋅ C f \left(V_{i} - V_{s}\right) \cdot s C_{s} = V_{x} \cdot C_{p a r} + \left(V_{x} - V_{o}\right) \cdot C_{f} (ViVs)sCs=VxCpar+(VxVo)Cf
V x = V i C s + V o C f C s + C f + C p a r V_{x} = \frac{V_{i} C_{s} + V_{o} C_{f}}{C_{s} + C_{f} + C_{p a r}} Vx=Cs+Cf+CparViCs+VoCf
仅考虑线性建立时
V o u t ( t ) = − C s C f ⋅ V i s t e p ⋅ T ( 0 ) 1 + T ( 0 ) ⋅ [ 1 − ( 1 + ω p ω z ) e − t τ ] V_{o u t} \left(t\right) = - \frac{C_{s}}{C_{f}} \cdot V_{i s t e p} \cdot \frac{T \left(0\right)}{1 + T \left(0\right)} \cdot \left[1 - \left(1 + \frac{\omega_{p}}{\omega_{z}}\right) e^{- \frac{t}{\tau}}\right] Vout(t)=CfCsVistep1+T(0)T(0)[1(1+ωzωp)eτt]
则虚地点的瞬态电压为
V x ( t ) = C s C s + C f + C p a r ⋅ V i s t e p ⋅ ( 1 − T ( 0 ) 1 + T ( 0 ) [ 1 − ( 1 + ω p ω z ) e − t τ ] ) V_{x} \left(t\right) = \frac{C_{s}}{C_{s} + C_{f} + C_{p a r}} \cdot V_{i s t e p} \cdot \left(1 - \frac{T \left(0\right)}{1 + T \left(0\right)} \left[1 - \left(1 + \frac{\omega_{p}}{\omega_{z}}\right) e^{- \frac{t}{\tau}}\right]\right) Vx(t)=Cs+Cf+CparCsVistep(11+T(0)T(0)[1(1+ωzωp)eτt])
忽略静态建立误差,则虚地点瞬态电压可以写为
V x ( t ) = C s C s + C f + C p a r ⋅ V i s t e p ⋅ ( 1 + ω p ω z ) e − t τ V_{x} \left(t\right) = \frac{C_{s}}{C_{s} + C_{f} + C_{p a r}} \cdot V_{i s t e p} \cdot \left(1 + \frac{\omega_{p}}{\omega_{z}}\right) e^{- \frac{t}{\tau}} Vx(t)=Cs+Cf+CparCsVistep(1+ωzωp)eτt

Appendix

matlab建模,根据建立时间和建立精度要求迭代求解跨导

% Parameter analysis for SC-INT
% Consisting slew and linear settling
clear all
fs = 4e6;
tsettle = 0.9 * 1/2* 1/fs;
N_bit = 24;    % settling resolution
cs = 300e-15;    % equivalent sampling capacitor
cin1 = 1.8e-12;
cref = 2.4e-12;
cint1 = 12e-12;
cl = 2e-12;    % load cap
vistep = -16;

iter = 200;
gm = ones(1,iter+1)*1e-3;    % start from 1mS
gmoverid = 12;
cggovergm = 0.067e-15/(1e-6)    % gate cap w.r.t gm (fF/uS)

for i = 1:iter
    cpar = gm(i) * cggovergm + cin1 + cref - cs;
    cjunc = cpar/8 * 2;    % cdd of cascode FETs, approx 1/8 of Cgg for n/p MOSTs
    beta = cint1/(cs + cint1 + cpar)    % feedback ratio
    cltot = cl + (1-beta) * cint1;

	% input voltage step feedforward
	vxstep = vistep * cs / (cs + cpar + cint1 * cl / (cint1 + cl));    % virtual ground voltage
	vostep = vxstep * cint1 / (cint1 + cl);
	vo = zeros(1,ceil(tsettle * 1e9/0.1)) + vostep;    % calculate Vo according to settling time

	% slew settling
	Iss = 2 * gm(i) / gmoverid;
	SR = Iss / cltot;

	tau = cltot / (beta * gm(i));

	if abs(vxstep) <= sqrt(2) * Iss / gm(i)    % without slew
		tslew = 0;
		voslew = 0;
		tlineq = 0;
	else
	    tslew = (abs(vxstep) - sqrt(2) * Iss / gm(i)) / (beta * SR);
	    for j = 1:ceil(tslew*1e11)
	    	t = j / 1e11;
	    	vo(j) = vostep + t * SR;
	    end
	    voslew = SR * tslew + vostep;
	    tlineq = -tau * log(1 - (1 - beta * cint1 / (cint1 + cl)) * 1/beta * (vxstep + sqrt(2) * Iss / gm(i)) / (cs / cint1 * vistep));    
	end
	% linear settling
	fbw = 1/(2 * pi * tau);
	GBW = fbw / beta;
	tlin = (N_bit + 1) * log(2) * tau + tau * log((cl + cint1) / (cl + (1 - beta) * cint1)) - tlineq;
	for j = ceil(tslew * 1e11) + 1: ceil(tslew * 1e11)
		t = (j - ceil(tslew * 1e11)) / 1e11;
		vo(j) = -cs / cint1 * vistep * (1 - (1 + beta * cint1 / (cl + (1 - beta) * cint1)) * exp(-(tlineq + t) / tau));
	end
	ttot = tlin + tslew;
	gm(i + 1) = (1 + (ttot - tsettle) * 1e6) * gm(i);    % LMS based error feedback
end

vx = (vistep * cs + vo * cint1) / (cs + cint1 + cpar);    % KCL, virtual gnd voltage

figure(1)
plot(0.01 : 0.01 : ceil(tsettle * 1e11) / 100, [0 vo(1 : end - 1)], 'linewidth', 2); hold on
plot(0.01 : 0.01 : ceil(tsettle * 1e11) / 100, [0 vx(1 : end - 1)], 'linewidth', 2); hold on
plot([tslew tslew] * 1e9 + 1, [-5 2], 'linestyle', '--', 'color', 'g'); hold on
plot([0 tslew * 1e9 + 15], [0 0], 'linestyle', '--', 'color', 'm'); hold on
plot([0 tslew * 1e9 + 15], [cs / cint1 * (-vistep), cs / cint1 * (-vistep)], 'linestyle', '--', 'color', 'c'); hold off

xlabel('Settling Time /ns');
ylabel('Transient Voltage /V');
title('Transient Voltage of OTA output');
axis([0 tsettle * 1e9 + 15 -2.5 1.5]);
legend('Vout', 'Vx', 'slew time', 'loaction', 'southeast');

figure(2)
err_dynamic = 20 * log10(1 - vo ./ (-cs / cint1 * vistep));
plot(0.01 : 0.01 : ceil(tsettle * 1e11) / 100, err_dynamic); hold on
plot([tslew tslew] * 1e9 + 1, [-160 10], 'linestyle', '--', 'color', 'g'); hold on
line([0.01, ceil(tsettle * 1e11) / 100], [20 * log10(1/2 * 1/2^20), 20 * log10(1/2 * 1/2^20)]); hold off

xlabel('Settling Time /ns');
ylabel('Dynamic Settling Error /dB');
title('Dynamic Settling Error');
axis([0 tsettle*1e9+15 -160 10]);

瞬态建立波形如下图所示,红色曲线为虚地点电压变化,蓝色曲线为输出电压变化。
在这里插入图片描述
动态建立误差如下图所示,其中蓝色直线为20bit建立精度。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值