本文主要讨论基于开关电容的运放和积分器的建立过程。
0.Revision History
2025.4.24 1st manuscript
1.闭环系统
一个闭环系统如下图所示:
其闭环的传递函数可以表示为
H
(
s
)
=
v
o
v
i
=
a
(
s
)
1
+
a
(
s
)
f
(
s
)
=
a
(
s
)
1
+
T
(
s
)
=
1
f
(
s
)
⋅
T
(
s
)
1
+
T
(
s
)
\begin{equation} H(s) = \frac{v_o}{v_i}=\frac{a(s)}{1+a(s)f(s)}=\frac{a(s)}{1+T(s)}=\frac{1}{f(s)}\cdot\frac{T(s)}{1+T(s)} \end{equation}
H(s)=vivo=1+a(s)f(s)a(s)=1+T(s)a(s)=f(s)1⋅1+T(s)T(s)
式
(
1
)
(1)
(1)中环路增益可以表示为
T
(
s
)
=
a
(
s
)
⋅
f
(
s
)
T(s)=a(s)\cdot f(s)
T(s)=a(s)⋅f(s)
闭环系统的稳定性分析在于环路,即
T
(
s
)
T(s)
T(s)的性质。根据Barkhausen稳定性判据,当
∠
T
(
s
)
=
−
180
°
∣
T
(
s
)
∣
>
1
\angle T(s)=-180\degree \\ |T(s)|>1
∠T(s)=−180°∣T(s)∣>1
时,环路不再稳定。从稳定性和建立速度的角度,通常要求环路的增益裕度GM为3-5,相位裕度为
60
°
60\degree
60°~
70
°
70\degree
70°。
2.开关电容电路
基于OTA的开关电容积分器和放大器如下图所示(Ref: Murmann’s Slide):
开关电容积分器(放大器)在积分(放大)相位的单端等效电路如图所示(Ref: Nan Sun’s Slide):
利用返回比(Return Ratio)分析方法,将电路中所有独立源置零,断开环路中的受控源,并添加激励信号,计算受控源的响应,返回比可以表示为
R
e
t
u
r
n
R
a
t
i
o
=
−
s
r
e
t
u
r
n
s
t
e
s
t
\begin{equation} Return \ Ratio = -\frac{s_{return}}{s_{test}} \end{equation}
Return Ratio=−stestsreturn
输入源为独立源,输入接地;受控源为压控电流源,将其与输出断开;在断开的位置添加一个激励信号,由于受控源为电流源,因此添加电流激励
i
t
i_t
it。闭环单级OTA的返回比计算小信号模型如下图所示
虚地点电压
v
x
v_x
vx可以表示为
v
x
=
C
f
C
f
+
C
s
+
C
p
a
r
⋅
v
o
=
β
v
o
=
β
⋅
[
−
i
t
⋅
(
R
L
/
/
1
s
C
L
t
o
t
)
]
\begin{equation} v_x = \frac{C_f}{C_f+C_s+C_{par}}\cdot v_o=\beta v_o=\beta \cdot[-i_t\cdot(R_L//\frac{1}{sC_{Ltot}})] \end{equation}
vx=Cf+Cs+CparCf⋅vo=βvo=β⋅[−it⋅(RL//sCLtot1)]
其中反馈系数(feedback factor)
β
\beta
β为
β
=
C
f
C
f
+
C
s
+
C
p
a
r
\begin{equation} \beta = \frac{C_f}{C_f+C_s+C_{par}} \end{equation}
β=Cf+Cs+CparCf
C
L
t
o
t
C_{Ltot}
CLtot为从输出端看到的总的负载电容,表示为
C
f
C_f
Cf串联(
C
s
C_s
Cs并联
C
p
a
r
C_{par}
Cpar),然后并联
C
L
C_L
CL,表达式为
C
L
t
o
t
=
C
L
+
C
f
⋅
(
C
s
+
C
p
a
r
)
C
f
+
C
s
+
C
p
a
r
=
C
L
+
(
1
−
β
)
⋅
C
f
\begin{equation} C_{Ltot} = C_L+\frac{C_f\cdot(C_s+C_{par})}{C_f+C_s+C_{par}}=C_L+(1-\beta)\cdot C_f \end{equation}
CLtot=CL+Cf+Cs+CparCf⋅(Cs+Cpar)=CL+(1−β)⋅Cf
环路增益(返回比)可以表示为
T
(
s
)
=
−
i
r
i
t
=
−
G
m
⋅
v
x
i
t
=
β
⋅
G
m
R
L
1
+
s
R
L
C
L
t
o
t
=
β
⋅
G
m
R
L
1
+
s
R
L
[
C
L
+
(
1
−
β
)
⋅
C
f
]
\begin{equation} T(s)=-\frac{i_r}{i_t}=-\frac{G_m\cdot v_x}{i_t}=\beta\cdot\frac{G_mR_L}{1+sR_LC_{Ltot}}=\beta\cdot\frac{G_mR_L}{1+sR_L[C_L+(1-\beta)\cdot C_f]} \end{equation}
T(s)=−itir=−itGm⋅vx=β⋅1+sRLCLtotGmRL=β⋅1+sRL[CL+(1−β)⋅Cf]GmRL
由此可见,单级运放的环路传递函数中包含一个极点。当频率非常高时,环路增益可以简化为
T
(
s
)
∣
s
i
s
h
i
g
h
≈
β
⋅
G
m
s
C
L
t
o
t
=
ω
c
s
\begin{equation} T(s)|_{s\ is\ high}\approx\beta\cdot\frac{G_m}{sC_{Ltot}}=\frac{\omega_c}{s} \end{equation}
T(s)∣s is high≈β⋅sCLtotGm=sωc
其中
ω
c
\omega_c
ωc为拐点频率(同时也是T(s)的单位增益带宽
ω
u
g
b
\omega_{ugb}
ωugb)
ω
u
g
b
=
β
⋅
G
m
C
L
t
o
t
\begin{equation} \omega_{ugb}=\frac{\beta\cdot G_m}{C_{Ltot}} \end{equation}
ωugb=CLtotβ⋅Gm
3.闭环等效
由式
(
1
)
(1)
(1),闭环运放的传递函数可以表示为
H
(
s
)
=
1
f
(
s
)
⋅
T
(
s
)
1
+
T
(
s
)
H(s) =\frac{1}{f(s)}\cdot\frac{T(s)}{1+T(s)}
H(s)=f(s)1⋅1+T(s)T(s)
其中
1
f
(
s
)
\frac{1}{f(s)}
f(s)1为环路增益无穷大时的理想闭环增益,计算原理图如下所示
当环路增益无穷大时,虚地点
v
x
v_x
vx严格为0,同时有
(
v
i
−
v
x
)
⋅
s
C
s
=
(
v
x
−
v
0
)
⋅
s
C
f
(v_i-v_x)\cdot sC_s=(v_x-v_0)\cdot sC_f
(vi−vx)⋅sCs=(vx−v0)⋅sCf
解得
1
f
(
s
)
=
v
o
v
i
=
−
C
s
C
f
\begin{equation} \frac{1}{f(s)}=\frac{v_o}{v_i}=-\frac{C_s}{C_f} \end{equation}
f(s)1=vivo=−CfCs
闭环运放的DC增益为
H
(
0
)
=
1
f
(
0
)
⋅
T
(
0
)
1
+
T
(
0
)
=
−
C
s
C
f
⋅
β
⋅
G
m
R
L
1
+
β
⋅
G
m
R
L
=
−
C
s
C
f
⋅
1
1
+
1
β
⋅
G
m
R
L
\begin{equation} H(0)=\frac{1}{f(0)}\cdot \frac{T(0)}{1+T(0)}=-\frac{C_s}{C_f}\cdot\frac{\beta\cdot G_mR_L}{1+\beta\cdot G_mR_L}=-\frac{C_s}{C_f}\cdot\frac{1}{1+\frac{1}{\beta\cdot G_mR_L}} \end{equation}
H(0)=f(0)1⋅1+T(0)T(0)=−CfCs⋅1+β⋅GmRLβ⋅GmRL=−CfCs⋅1+β⋅GmRL11
静态增益误差为
∣
ϵ
0
∣
=
∣
H
(
0
)
−
1
/
f
(
0
)
1
/
f
(
0
)
∣
=
∣
T
(
0
)
1
+
T
(
0
)
−
1
∣
≈
1
T
(
0
)
=
1
β
⋅
G
m
R
L
\begin{equation} |\epsilon_0|=|\frac{H(0)-1/f(0)}{1/f(0)}|=|\frac{T(0)}{1+T(0)}-1|\approx\frac{1}{T(0)}=\frac{1}{\beta\cdot G_mR_L} \end{equation}
∣ϵ0∣=∣1/f(0)H(0)−1/f(0)∣=∣1+T(0)T(0)−1∣≈T(0)1=β⋅GmRL1
由式(7),随着频率增加,环路增益下降,闭环增益也随之下降,高频处的闭环增益可以表示为
∣
H
(
j
ω
)
∣
=
∣
1
f
⋅
T
(
s
)
1
+
T
(
s
)
∣
=
C
s
C
f
⋅
∣
ω
c
/
s
1
+
ω
c
/
s
∣
=
C
s
C
f
⋅
ω
c
ω
2
+
ω
c
2
\begin{equation} |H(j\omega)| =|\frac{1}{f}\cdot\frac{T(s)}{1+T(s)}|=\frac{C_s}{C_f}\cdot |\frac{\omega_c/s}{1+\omega_c/s}|=\frac{C_s}{C_f}\cdot \frac{\omega_c}{\sqrt{\omega^2+\omega_c^2}} \end{equation}
∣H(jω)∣=∣f1⋅1+T(s)T(s)∣=CfCs⋅∣1+ωc/sωc/s∣=CfCs⋅ω2+ωc2ωc
当频率为
ω
=
ω
c
(
ω
u
g
b
)
\omega=\omega_c(\omega_{ugb})
ω=ωc(ωugb)时,闭环增益下降为
∣
H
(
0
)
∣
|H(0)|
∣H(0)∣的
1
/
2
1/\sqrt2
1/2,即环路的单位增益带宽对应闭环系统的-3dB带宽,即
f
−
3
d
B
=
1
2
π
⋅
β
G
m
C
L
t
o
t
\begin{equation} f_{-3dB}=\frac{1}{2\pi}\cdot \frac{\beta G_m}{C_{Ltot}} \end{equation}
f−3dB=2π1⋅CLtotβGm
单级OTA的增益带宽积(GBW)可以表示为
G
B
W
O
T
A
=
G
m
R
L
⋅
1
2
π
R
L
C
L
t
o
t
=
1
2
π
⋅
G
m
C
L
t
o
t
\begin{equation} GBW_{OTA}=G_mR_L\cdot\frac{1}{2\pi R_LC_{Ltot}}=\frac{1}{2\pi}\cdot \frac{ G_m}{C_{Ltot}} \end{equation}
GBWOTA=GmRL⋅2πRLCLtot1=2π1⋅CLtotGm
则环路的-3dB带宽也可以表示为
f
−
3
d
B
=
β
⋅
G
B
W
O
T
A
\begin{equation} f_{-3dB}= \beta\cdot GBW_{OTA} \end{equation}
f−3dB=β⋅GBWOTA
根据以上分析,可以对开关电容闭环运放作单极点等效
H
(
s
)
=
H
(
0
)
1
+
s
2
π
f
−
3
d
B
=
H
(
0
)
1
+
s
β
G
m
/
C
L
t
o
t
=
H
(
0
)
1
+
s
τ
\begin{equation} H(s)=\frac{H(0)}{1+\frac{s}{2\pi f_{-3dB}}}=\frac{H(0)}{1+\frac{s}{\beta G_m/C_{Ltot}}}=\frac{H(0)}{1+s\tau} \end{equation}
H(s)=1+2πf−3dBsH(0)=1+βGm/CLtotsH(0)=1+sτH(0)
上式中闭环运放建立时间常数为
τ
=
1
β
G
m
⋅
C
L
t
o
t
\begin{equation} \tau=\frac{1}{\beta G_m}\cdot C_{Ltot} \end{equation}
τ=βGm1⋅CLtot
第一项为闭环运放输出端看过去的等效阻抗,第二项为输出端的等效负载电容。
以上推导中忽略了电容前馈的影响,在高频时,输入信号通过反馈电容前馈到输出端,当OTA中的跨导电流与前馈电流完全抵消时,OTA输出电压为0,即产生了一个零点。
在输出节点,根据KCL,零点的位置满足
v
x
⋅
G
m
=
(
v
x
−
0
)
⋅
s
C
f
v_x\cdot G_m=(v_x-0)\cdot sC_f
vx⋅Gm=(vx−0)⋅sCf
解得右半平面的零点为
ω
z
=
G
m
C
f
\omega_z=\frac{G_m}{C_f}
ωz=CfGm
对比左半平面的极点为
ω
p
=
ω
c
=
β
G
m
C
L
t
o
t
\omega_p=\omega_c=\frac{\beta G_m}{C_{Ltot}}
ωp=ωc=CLtotβGm
当反馈电容
C
f
C_f
Cf较小时,这个零点通常远远高于极点的频率。对于积分器的情况,由于反馈电容
C
f
C_f
Cf通常较大,零点位置会远低于极点。考虑前馈电容导致的零点后的闭环运放传递函数改写为
H
(
s
)
=
H
(
0
)
⋅
1
−
s
/
ω
z
1
+
s
/
ω
p
=
−
C
s
C
f
⋅
[
1
−
1
T
(
0
)
]
⋅
1
−
s
G
m
/
C
f
1
+
s
β
G
m
/
C
L
t
o
t
\begin{equation} H(s)=H(0)\cdot\frac{1-s/\omega_z}{1+s/\omega_p}=-\frac{C_s}{C_f}\cdot[1-\frac{1}{T(0)}]\cdot\frac{1-\frac{s}{G_m/C_f}}{1+\frac{s}{\beta G_m/C_{Ltot}}} \end{equation}
H(s)=H(0)⋅1+s/ωp1−s/ωz=−CfCs⋅[1−T(0)1]⋅1+βGm/CLtots1−Gm/Cfs
另一种输入结构
以上的闭环传递函数的推导中,输入位于采样电容的左侧;对于输入位于运放另一侧的情况(通常用于噪声计算),小信号等效模型如下图所示
当增益为无穷大时,虚地点电压
v
x
v_x
vx严格等于输入
v
i
v_i
vi,则有
v
i
=
C
f
C
s
+
C
f
+
C
p
a
r
⋅
v
o
v_i=\frac{C_f}{C_s+C_f+C_{par}}\cdot v_o \\
vi=Cs+Cf+CparCf⋅vo
解得
1
f
(
s
)
=
1
+
C
s
+
C
p
a
r
C
f
=
1
/
β
\frac{1}{f(s)}=1+\frac{C_s+C_{par}}{C_f}=1/\beta
f(s)1=1+CfCs+Cpar=1/β
环路的计算与前文一致,基于此输入模式的运放闭环传递函数可以表示为
H
(
s
)
=
H
(
0
)
1
+
s
τ
=
1
β
⋅
[
1
−
1
T
(
0
)
]
⋅
1
1
+
s
τ
\begin{equation} H(s)=\frac{H(0)}{1+s\tau}=\frac{1}{\beta}\cdot[1-\frac{1}{T(0)}]\cdot\frac{1}{1+s\tau} \end{equation}
H(s)=1+sτH(0)=β1⋅[1−T(0)1]⋅1+sτ1
4.线性建立
首先忽略前馈零点的影响,采用单极点闭环等效,即
H
(
s
)
=
H
(
0
)
1
+
s
2
π
f
−
3
d
B
=
H
(
0
)
1
+
s
τ
\begin{equation} H(s)=\frac{H(0)}{1+\frac{s}{2\pi f_{-3dB}}}=\frac{H(0)}{1+s\tau} \end{equation}
H(s)=1+2πf−3dBsH(0)=1+sτH(0)
运放输入端加入幅度为
V
s
t
e
p
V_{step}
Vstep的阶跃信号后,输出端的时域表达式可以通过拉普拉斯反变换求解,即
V
o
u
t
(
t
)
=
L
−
1
[
H
(
s
)
⋅
V
s
t
e
p
s
]
=
H
(
0
)
⋅
V
s
t
e
p
⋅
L
−
1
[
1
1
+
s
τ
⋅
1
s
]
=
H
(
0
)
⋅
V
s
t
e
p
⋅
(
1
−
e
−
t
τ
)
=
−
C
s
C
f
⋅
V
s
t
e
p
⋅
[
1
−
1
T
(
0
)
]
⋅
(
1
−
e
−
t
τ
)
\begin{align} V_{out}(t)&=\mathcal{L^{-1}}[H(s)\cdot \frac{V_{step}}{s}]=H(0)\cdot V_{step}\cdot\mathcal{L^{-1}}[\frac{1}{1+s\tau}\cdot \frac{1}{s}]=H(0)\cdot V_{step}\cdot(1-e^{-\frac{t}{\tau}}) \\ &=-\frac{C_s}{C_f}\cdot V_{step}\cdot [1-\frac{1}{T(0)}]\cdot(1-e^{-\frac{t}{\tau}}) \end{align}
Vout(t)=L−1[H(s)⋅sVstep]=H(0)⋅Vstep⋅L−1[1+sτ1⋅s1]=H(0)⋅Vstep⋅(1−e−τt)=−CfCs⋅Vstep⋅[1−T(0)1]⋅(1−e−τt)
其中
L
−
1
[
1
1
+
s
τ
⋅
1
s
]
=
L
−
1
[
1
s
−
τ
1
+
s
τ
]
=
L
−
1
[
1
s
−
1
s
−
(
−
1
/
τ
)
]
=
u
(
t
)
⋅
(
1
−
e
−
t
τ
)
\mathcal{L^{-1}}[\frac{1}{1+s\tau}\cdot \frac{1}{s}]=\mathcal{L^{-1}}[\frac{1}{s}-\frac{\tau}{1+s\tau}]=\mathcal{L^{-1}}[\frac{1}{s}-\frac{1}{s-(-1/\tau)}]=u(t)\cdot(1-e^{-\frac{t}{\tau}})
L−1[1+sτ1⋅s1]=L−1[s1−1+sττ]=L−1[s1−s−(−1/τ)1]=u(t)⋅(1−e−τt)
由时域表达式,OTA的有限直流增益引入静态建立误差,有限GBW引入动态建立误差,如下图所示
动态建立误差为
ϵ
d
=
1
−
(
1
−
e
−
t
τ
)
∣
t
=
t
s
e
t
t
l
e
=
e
−
t
s
e
t
t
l
e
τ
\epsilon_d=1-(1-e^{-\frac{t}{\tau}})|_{t=t_{settle}}=e^{-\frac{t_{settle}}{\tau}}
ϵd=1−(1−e−τt)∣t=tsettle=e−τtsettle
其中
t
s
e
t
t
l
e
t_{settle}
tsettle为建立时间,可以等价得表示为
t
s
e
t
t
l
e
=
−
τ
⋅
ln
ϵ
d
t_{settle}=-\tau\cdot\ln \epsilon_d
tsettle=−τ⋅lnϵd
常见的建立时间要求如下表格所示
ϵ d \epsilon_d ϵd | t s e t t l e / τ t_{settle}/{\tau} tsettle/τ |
---|---|
10% | 2.3 |
1% | 4.6 |
0.1% | 6.9 |
0.01% | 9.2 |
1 0 − 6 10^{-6} 10−6 | 13.8 |
假设运放的阶跃建立过程完全线性,对于一个N-bit精度的系统,采样频率为
f
s
f_s
fs,时钟周期一半时间为建立时间,并且要求动态建立误差不超过1/2LSB,则需要满足
e
−
1
2
⋅
t
s
τ
=
e
−
1
2
⋅
1
f
s
1
2
π
⋅
f
−
3
d
B
<
1
2
⋅
1
2
N
e^{-\frac{\frac{1}{2}\cdot t_s}{\tau}}=e^{-\frac{\frac{1}{2}\cdot \frac{1}{f_s}}{\frac{1}{2\pi \cdot f_{-3dB}}}}<\frac{1}{2}\cdot\frac{1}{2^N}
e−τ21⋅ts=e−2π⋅f−3dB121⋅fs1<21⋅2N1
解得
t
s
>
2
⋅
(
N
+
1
)
⋅
ln
2
⋅
τ
f
−
3
d
B
=
β
⋅
f
G
B
W
O
T
A
>
(
N
+
1
)
π
⋅
ln
2
⋅
f
s
\begin{align} &t_s>2\cdot(N+1)\cdot\ln2\cdot\tau \\ &f_{-3dB}=\beta\cdot f_{GBW_{OTA}}>\frac{(N+1)}{\pi}\cdot\ln2\cdot f_s \end{align}
ts>2⋅(N+1)⋅ln2⋅τf−3dB=β⋅fGBWOTA>π(N+1)⋅ln2⋅fs
其中ln2 = 0.7,对于24bit的建立精度,要求
t
s
>
2
⋅
17.3
τ
β
⋅
f
G
B
W
O
T
A
>
5.7
⋅
f
s
\begin{align} &t_s>2\cdot17.3\tau \\ &\beta\cdot f_{GBW_{OTA}}>5.7\cdot f_s \end{align}
ts>2⋅17.3τβ⋅fGBWOTA>5.7⋅fs
每提高1bit的建立精度要求,对运放的带宽要求提高0.22
f
s
f_s
fs。
电容前馈的影响
当采样电容左侧开关闭合后,相当于在闭环运放输入端加入一个阶跃信号,在高频下,电阻视作断路,闭环运放等效为一个电容分压网络,如下图所示。
阶跃输入在OTA输入端分压产生的前馈量
V
x
s
t
e
p
V_{xstep}
Vxstep完全由电容分压决定
V
x
s
t
e
p
=
V
i
s
t
e
p
⋅
C
s
C
s
+
C
p
a
r
+
C
f
C
L
C
f
+
C
L
\begin{equation} V_{xstep}=V_{istep}\cdot\frac{C_s}{C_s+C_{par}+\frac{C_fC_L}{C_f+C_L}} \end{equation}
Vxstep=Vistep⋅Cs+Cpar+Cf+CLCfCLCs
运放输出端产生的前馈量为
V
o
s
t
e
p
V
i
s
t
e
p
=
V
o
s
t
e
p
V
x
s
t
e
p
⋅
V
x
s
t
e
p
V
i
s
t
e
p
=
C
f
C
f
+
C
L
⋅
C
s
C
s
+
C
p
a
r
+
C
f
C
L
C
f
+
C
L
=
C
s
C
f
⋅
β
C
f
C
L
+
(
1
−
β
)
C
f
=
C
s
C
f
⋅
k
f
\begin{align} \frac{V_{ostep}}{V_{istep}}=\frac{V_{ostep}}{V_{xstep}}\cdot\frac{V_{xstep}}{V_{istep}}&=\frac{C_f}{C_f+C_L}\cdot\frac{C_s}{C_s+C_{par}+\frac{C_fC_L}{C_f+C_L}}=\frac{C_s}{C_f}\cdot\frac{\beta C_f}{C_L+(1-\beta)C_f}\\&=\frac{C_s}{C_f}\cdot k_f \end{align}
VistepVostep=VxstepVostep⋅VistepVxstep=Cf+CLCf⋅Cs+Cpar+Cf+CLCfCLCs=CfCs⋅CL+(1−β)CfβCf=CfCs⋅kf
上式中
k
f
=
β
C
f
C
L
+
(
1
−
β
)
C
f
k_f=\frac{\beta C_f}{C_L+(1-\beta)C_f}
kf=CL+(1−β)CfβCf为前馈电压系数,由上一小节,考虑电容前馈影响后的闭环运放传递函数为
H
(
s
)
=
−
C
s
C
f
⋅
[
1
−
1
T
(
0
)
]
⋅
1
−
s
/
ω
z
1
+
s
/
ω
p
H(s)=-\frac{C_s}{C_f}\cdot[1-\frac{1}{T(0)}]\cdot\frac{1-s/\omega_z}{1+s/\omega_p}
H(s)=−CfCs⋅[1−T(0)1]⋅1+s/ωp1−s/ωz
则输入为
V
i
s
t
e
p
V_{istep}
Vistep时,输出电压时域表达式为
V
o
u
t
(
t
)
=
L
−
1
[
H
(
s
)
⋅
V
i
s
t
e
p
s
]
=
−
V
i
s
t
e
p
⋅
C
s
C
f
⋅
[
1
−
1
T
(
0
)
]
⋅
[
1
−
e
−
t
τ
⋅
(
1
+
ω
p
ω
z
)
]
\begin{equation} V_{out}(t)=\mathcal{L^{-1}}[H(s)\cdot\frac{V_{istep}}{s}]=-V_{istep}\cdot\frac{C_s}{C_f}\cdot[1-\frac{1}{T(0)}]\cdot[1-e^{-\frac{t}{\tau}}\cdot(1+\frac{\omega_p}{\omega_z})] \end{equation}
Vout(t)=L−1[H(s)⋅sVistep]=−Vistep⋅CfCs⋅[1−T(0)1]⋅[1−e−τt⋅(1+ωzωp)]
其中
1
+
ω
p
ω
z
=
1
+
β
G
m
C
L
t
o
t
/
G
m
C
f
=
C
L
+
C
f
C
L
+
(
1
−
β
)
C
f
=
1
+
k
f
>
1
1+\frac{\omega_p}{\omega_z}=1+\frac{\beta G_m}{C_{Ltot}}/\frac{G_m}{C_f}=\frac{C_L+C_f}{C_L+(1-\beta)C_f}=1+k_f>1
1+ωzωp=1+CLtotβGm/CfGm=CL+(1−β)CfCL+Cf=1+kf>1
即前馈电压系数恰好等于极点与零点的比值,动态建立误差为
ϵ
d
=
1
−
[
1
−
e
−
t
τ
⋅
(
1
+
ω
p
ω
z
)
]
=
e
−
t
τ
⋅
(
1
+
ω
p
ω
z
)
=
e
−
t
τ
⋅
(
1
+
k
f
)
\epsilon_d=1-[1-e^{-\frac{t}{\tau}}\cdot(1+\frac{\omega_p}{\omega_z})]=e^{-\frac{t}{\tau}}\cdot(1+\frac{\omega_p}{\omega_z})=e^{-\frac{t}{\tau}}\cdot(1+k_f)
ϵd=1−[1−e−τt⋅(1+ωzωp)]=e−τt⋅(1+ωzωp)=e−τt⋅(1+kf)
电容前馈导致动态建立误差提高。等价得可以得到建立时间与建立精度的关系为
t
=
−
τ
⋅
ln
(
ϵ
d
1
+
k
f
)
=
τ
⋅
[
(
N
+
1
)
ln
2
+
ln
(
1
+
k
f
)
]
t=-\tau\cdot\ln(\frac{\epsilon_d}{1+k_f})=\tau\cdot[(N+1)\ln{2}+\ln(1+k_f)]
t=−τ⋅ln(1+kfϵd)=τ⋅[(N+1)ln2+ln(1+kf)]
5.压摆建立
对于全差分NMOS输入对运放,且输入管均工作在饱和区时,根据长沟道平方律关系
V
i
n
1
−
V
i
n
2
=
V
G
S
1
−
V
G
S
2
=
2
I
D
1
μ
n
C
o
x
W
L
+
V
T
H
−
(
2
I
D
2
μ
n
C
o
x
W
L
+
V
T
H
)
\begin{equation} V_{in1}-V_{in2}=V_{GS1}-V_{GS2}=\sqrt{\frac{2I_{D1}}{\mu_nC_{ox}\frac{W}{L}}}+V_{TH}-(\sqrt{\frac{2I_{D2}}{\mu_nC_{ox}\frac{W}{L}}}+V_{TH}) \end{equation}
Vin1−Vin2=VGS1−VGS2=μnCoxLW2ID1+VTH−(μnCoxLW2ID2+VTH)
输入管电流满足关系式
I
D
1
+
I
D
2
=
I
S
S
I_{D1}+I_{D2}=I_{SS}
ID1+ID2=ISS,对上式两侧取平方
(
V
i
n
1
−
V
i
n
1
)
2
=
2
μ
n
C
o
x
W
L
(
I
S
S
−
2
I
D
1
I
D
2
)
(V_{in1}-V_{in1})^2=\frac{2}{\mu_nC_{ox}\frac{W}{L}}(I_{SS}-2\sqrt{I_{D1}I_{D2}})
(Vin1−Vin1)2=μnCoxLW2(ISS−2ID1ID2)
同时有式子
4
I
D
1
I
D
2
=
(
I
D
1
+
I
D
2
)
2
−
(
I
D
1
−
I
D
2
)
2
=
I
S
S
2
−
(
I
D
1
−
I
D
2
)
2
4I_{D1}I_{D2}=(I_{D1}+I_{D2})^2-(I_{D1}-I_{D2})^2=I_{SS}^2-(I_{D1}-I_{D2})^2
4ID1ID2=(ID1+ID2)2−(ID1−ID2)2=ISS2−(ID1−ID2)2
则上式可以解得
(
I
D
1
−
I
D
2
)
2
=
−
1
4
(
μ
n
C
o
x
W
L
)
2
⋅
(
V
i
n
1
−
V
i
n
2
)
4
+
I
S
S
⋅
μ
n
C
o
x
W
L
⋅
(
V
i
n
1
−
V
i
n
2
)
2
(I_{D1}-I_{D2})^2=-\frac{1}{4}(\mu_nC_{ox}\frac{W}{L})^2\cdot(V_{in1}-V_{in2})^4+I_{SS}\cdot\mu_nC_{ox}\frac{W}{L}\cdot(V_{in1}-V_{in2})^2
(ID1−ID2)2=−41(μnCoxLW)2⋅(Vin1−Vin2)4+ISS⋅μnCoxLW⋅(Vin1−Vin2)2
I
D
1
−
I
D
2
=
μ
n
C
o
x
W
L
I
S
S
⋅
(
V
i
n
1
−
V
i
n
2
)
⋅
1
−
μ
n
C
o
x
W
L
4
I
S
S
⋅
(
V
i
n
1
−
V
i
n
2
)
2
I_{D1}-I_{D2}=\sqrt{\mu_nC_{ox}\frac{W}{L}I_{SS}}\cdot(V_{in1}-V_{in2})\cdot\sqrt{1-\frac{\mu_nC_{ox}\frac{W}{L}}{4I_{SS}}\cdot(V_{in1}-V_{in2})^2}
ID1−ID2=μnCoxLWISS⋅(Vin1−Vin2)⋅1−4ISSμnCoxLW⋅(Vin1−Vin2)2
差分输入为0时,两个输入管电流均为尾电流的一半,得到全差分运放的平衡态跨导
g
m
=
∂
I
o
d
∂
V
i
d
∣
V
i
d
→
0
=
lim
V
i
d
→
0
I
D
1
−
I
D
2
V
i
n
1
−
V
i
n
2
=
2
μ
n
C
o
x
W
L
I
D
S
=
μ
n
C
o
x
W
L
I
S
S
g_m=\frac{\partial I_{od}}{\partial V_{id}}|_{V_{id}\to 0}=\lim_{V_{id}\to0}\frac{I_{D1}-I_{D2}}{V_{in1}-V_{in2}}=\sqrt{2\mu_nC_{ox}\frac{W}{L}I_{DS}}=\sqrt{\mu_nC_{ox}\frac{W}{L}I_{SS}}
gm=∂Vid∂Iod∣Vid→0=Vid→0limVin1−Vin2ID1−ID2=2μnCoxLWIDS=μnCoxLWISS
此时输入管的过驱动电压为
V
o
v
=
2
I
D
g
m
=
I
S
S
g
m
V_{ov}=\frac{2I_D}{g_m}=\frac{I_{SS}}{g_m}
Vov=gm2ID=gmISS
当差分输入电压为大信号时,使得只有一端的输入管开启,另一侧输入管截止,此时恰好满足
V
G
S
2
=
V
T
H
V_{GS2}=V_{TH}
VGS2=VTH,则差分输入为
Δ
V
i
n
t
1
=
2
I
S
S
μ
n
C
o
x
W
L
=
2
⋅
I
S
S
g
m
\Delta V_{int1}=\sqrt{\frac{2I_{SS}}{\mu_nC_{ox}\frac{W}{L}}}=\sqrt{2}\cdot\frac{I_{SS}}{g_m}
ΔVint1=μnCoxLW2ISS=2⋅gmISS
即压摆发生时的输入电压只差为平衡态过驱动电压的
2
\sqrt{2}
2倍。
当差分输入电压绝对值超过
Δ
V
i
n
t
1
\Delta V_{int1}
ΔVint1时,输出差分电流表达式不再成立。此时平衡态跨导为0,电路不具备压控电流源的能力,即超出工作范围。将平衡态跨导表达式带入,差分电流表达式可以重写为
I
o
d
=
g
m
V
i
d
⋅
1
−
g
m
2
4
I
S
S
2
⋅
V
i
d
2
\begin{equation} I_{od}=g_mV_{id}\cdot\sqrt{1-\frac{g_m^2}{4I_{SS}^2}\cdot V_{id}^2} \end{equation}
Iod=gmVid⋅1−4ISS2gm2⋅Vid2
I
o
d
I
S
S
=
V
i
d
I
S
S
/
g
m
⋅
1
−
1
4
⋅
(
V
i
d
I
S
S
/
g
m
)
2
\begin{equation} \frac{I_{od}}{I_{SS}}=\frac{V_{id}}{I_{SS}/g_m}\cdot\sqrt{1-\frac{1}{4}\cdot(\frac{V_{id}}{I_{SS}/g_m})^2} \end{equation}
ISSIod=ISS/gmVid⋅1−41⋅(ISS/gmVid)2
以
V
i
d
I
S
S
/
g
m
\frac{V_{id}}{I_{SS}/g_m}
ISS/gmVid为x轴,
I
o
d
I
S
S
\frac{I_{od}}{I_{SS}}
ISSIod为y轴,绘制曲线得
因此压摆建立的工作区间为
∣
V
i
d
∣
>
2
⋅
I
S
S
g
m
|V_{id}|>\sqrt{2}\cdot\frac{I_{SS}}{g_m}
∣Vid∣>2⋅gmISS
输入管gm/id越大,越容易进入压摆区间。运放输入差分电压超过
2
⋅
I
S
S
g
m
\sqrt{2}\cdot\frac{I_{SS}}{g_m}
2⋅gmISS时,运放首先压摆建立时,运放输出电流由尾电流决定,当脱离压摆工作区间时,运放回归线性建立,建立过程中虚地点电压和输出差分电流如下图所示。
运放压摆率为
S
R
=
∂
V
o
d
∂
t
=
I
S
S
C
L
t
o
t
SR = \frac{\partial V_{o d}}{\partial t} = \frac{I_{S S}}{C_{L t o t}}
SR=∂t∂Vod=CLtotISS
输入端电压变化速度为
β
⋅
S
R
\beta\cdot SR
β⋅SR。当运放输入的电压阶跃为
V
x
s
t
e
p
V_{xstep}
Vxstep(
V
x
s
t
e
p
V_{xstep}
Vxstep为负值)时,运放压摆的工作时间为
t
s
l
e
w
=
∣
V
x
s
t
e
p
∣
−
2
⋅
I
S
S
g
m
β
⋅
S
R
=
−
V
x
s
t
e
p
+
2
2
⋅
I
D
g
m
β
⋅
S
R
t_{slew} = \frac{\left|V_{x s t e p}\right| - \sqrt{2} \cdot \frac{I_{S S}}{g_{m}}}{\beta \cdot S R} = - \frac{V_{x s t e p} + 2 \sqrt{2} \cdot \frac{I_{D}}{g_{m}}}{\beta \cdot SR}
tslew=β⋅SR∣Vxstep∣−2⋅gmISS=−β⋅SRVxstep+22⋅gmID
完成压摆建立后,运放输出电压为
V
o
s
l
e
w
=
S
R
⋅
t
s
l
e
w
+
v
o
s
t
e
p
=
−
S
R
⋅
(
V
x
s
t
e
p
+
2
⋅
I
S
S
g
m
β
⋅
S
R
)
+
C
s
C
f
⋅
β
C
f
C
L
+
(
1
−
β
)
C
f
⋅
V
i
s
t
e
p
=
−
1
β
(
V
x
s
t
e
p
+
2
⋅
I
s
s
g
m
)
+
C
s
C
f
⋅
k
f
⋅
V
i
s
t
e
p
\begin{align} V_{o s l e w} &= S R \cdot t_{s l e w} + v_{o s t e p} = - S R \cdot \left(\frac{V_{x s t e p} + \sqrt{2} \cdot \frac{I_{S S}}{g_{m}}}{\beta \cdot S R}\right) + \frac{C_{s}}{C_{f}} \cdot \frac{\beta C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} \cdot V_{i s t e p} \\ &= - \frac{1}{\beta} \left(V_{x s t e p} + \sqrt{2} \cdot \frac{I_{s s}}{g_{m}}\right) + \frac{C_{s}}{C_{f}} \cdot k_f\cdot V_{i s t e p} \end{align}
Voslew=SR⋅tslew+vostep=−SR⋅(β⋅SRVxstep+2⋅gmISS)+CfCs⋅CL+(1−β)CfβCf⋅Vistep=−β1(Vxstep+2⋅gmIss)+CfCs⋅kf⋅Vistep
运放输入从0完全线性建立到该输出电压的等效建立时间
t
l
i
n
,
e
q
t_{lin,eq}
tlin,eq可通过动态建立误差计算,即
d
y
n
a
m
i
c
e
r
r
o
r
=
C
L
+
C
f
C
L
+
(
1
−
β
)
C
f
⋅
e
−
t
l
i
n
,
e
q
τ
=
−
C
s
C
f
⋅
V
i
s
t
e
p
−
V
o
s
l
e
w
−
C
s
C
f
⋅
V
i
s
t
e
p
=
1
+
S
R
⋅
t
s
l
e
w
+
v
o
s
t
e
p
C
s
C
f
⋅
V
i
s
t
e
p
d y n a m i c \textrm{ } e r r o r = \frac{C_{L} + C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} \cdot e^{- \frac{t_{l i n , e q}}{\tau}} = \frac{- \frac{C_{s}}{C_{f}} \cdot V_{i s t e p} - V_{o s l e w}}{- \frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} = 1 + \frac{S R \cdot t_{s l e w} + v_{o s t e p}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}}
dynamic error=CL+(1−β)CfCL+Cf⋅e−τtlin,eq=−CfCs⋅Vistep−CfCs⋅Vistep−Voslew=1+CfCs⋅VistepSR⋅tslew+vostep
上式子中,
v
o
s
t
e
p
=
C
s
C
f
⋅
β
C
f
C
L
+
(
1
−
β
)
C
f
⋅
v
i
s
t
e
p
v_{o s t e p} = \frac{C_{s}}{C_{f}} \cdot \frac{\beta C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} \cdot v_{i s t e p}
vostep=CfCs⋅CL+(1−β)CfβCf⋅vistep
上式可以改写为
C
L
+
C
f
C
L
+
(
1
−
β
)
C
f
⋅
e
−
t
l
i
n
,
e
q
τ
=
1
+
β
C
f
C
L
+
(
1
−
β
)
C
f
+
S
R
⋅
t
s
l
e
w
C
s
C
f
⋅
V
i
s
t
e
p
=
(
1
+
k
f
)
−
S
R
⋅
t
s
l
e
w
C
s
C
f
⋅
V
i
s
t
e
p
\frac{C_{L} + C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} \cdot e^{- \frac{t_{l i n , e q}}{\tau}} = 1 + \frac{\beta C_{f}}{C_{L} + \left(1 - \beta\right) C_{f}} + \frac{S R \cdot t_{s l e w}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} =(1+k_f) - \frac{S R \cdot t_{s l e w}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}}
CL+(1−β)CfCL+Cf⋅e−τtlin,eq=1+CL+(1−β)CfβCf+CfCs⋅VistepSR⋅tslew=(1+kf)−CfCs⋅VistepSR⋅tslew
e
−
t
l
i
n
,
e
q
τ
=
1
−
C
L
+
(
1
−
β
)
C
f
C
f
+
C
L
⋅
S
R
⋅
t
s
l
e
w
C
s
C
f
⋅
V
i
s
t
e
p
=
1
−
(
1
−
β
C
f
C
f
+
C
L
)
⋅
1
β
(
V
x
s
t
e
p
+
2
⋅
I
s
s
g
m
)
C
s
C
f
⋅
V
i
s
t
e
p
e^{- \frac{t_{l i n , e q}}{\tau}} = 1 - \frac{C_{L} + \left(1 - \beta\right) C_{f}}{C_{f} + C_{L}} \cdot \frac{S R \cdot t_{s l e w}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}} = 1 - \left(1 - \beta \frac{C_{f}}{C_{f} + C_{L}}\right) \cdot \frac{\frac{1}{\beta} \left(V_{x s t e p} + \sqrt{2} \cdot \frac{I_{s s}}{g_{m}}\right)}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}}
e−τtlin,eq=1−Cf+CLCL+(1−β)Cf⋅CfCs⋅VistepSR⋅tslew=1−(1−βCf+CLCf)⋅CfCs⋅Vistepβ1(Vxstep+2⋅gmIss)
t
l
i
n
,
e
q
=
−
τ
⋅
l
n
(
1
−
C
L
+
(
1
−
β
)
C
f
C
f
+
C
L
⋅
S
R
⋅
t
s
l
e
w
C
s
C
f
⋅
V
i
s
t
e
p
)
=
−
τ
⋅
l
n
(
1
−
(
1
−
β
C
f
C
f
+
C
L
)
⋅
1
β
(
V
x
s
t
e
p
+
2
⋅
I
s
s
g
m
)
C
s
C
f
⋅
V
i
s
t
e
p
)
t_{l i n , e q} = - \tau \cdot ln \left(1 - \frac{C_{L} + \left(1 - \beta\right) C_{f}}{C_{f} + C_{L}} \cdot \frac{S R \cdot t_{s l e w}}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}}\right) = - \tau \cdot ln \left(1 - \left(1 - \beta \frac{C_{f}}{C_{f} + C_{L}}\right) \cdot \frac{\frac{1}{\beta} \left(V_{x s t e p} + \sqrt{2} \cdot \frac{I_{s s}}{g_{m}}\right)}{\frac{C_{s}}{C_{f}} \cdot V_{i s t e p}}\right)
tlin,eq=−τ⋅ln(1−Cf+CLCL+(1−β)Cf⋅CfCs⋅VistepSR⋅tslew)=−τ⋅ln
1−(1−βCf+CLCf)⋅CfCs⋅Vistepβ1(Vxstep+2⋅gmIss)
运放脱离压摆后的线性建立时间为
τ
⋅
[
(
N
+
1
)
l
n
2
+
l
n
(
1
+
k
f
)
]
−
t
l
i
n
,
e
q
\tau \cdot \left[\left(N + 1\right) ln 2 + ln \left(1+k_f\right)\right] - t_{l i n , e q}
τ⋅[(N+1)ln2+ln(1+kf)]−tlin,eq
总建立时间为
t
s
l
e
w
+
τ
⋅
[
(
N
+
1
)
l
n
2
+
l
n
(
1
+
k
f
)
]
−
t
l
i
n
,
e
q
t_{s l e w} + \tau \cdot \left[\left(N + 1\right) ln 2 + ln \left(1+k_f\right)\right] - t_{l i n , e q}
tslew+τ⋅[(N+1)ln2+ln(1+kf)]−tlin,eq
注意到,当闭环放大器输入加入
V
i
s
t
e
p
V_{istep}
Vistep的阶跃后,OTA输入端电压变化为
V
x
s
t
e
p
=
C
s
C
s
+
C
i
n
+
C
f
C
L
C
f
+
C
L
⋅
V
i
s
t
e
p
<
V
i
s
t
e
p
V_{x s t e p} = \frac{C_{s}}{C_{s} + C_{i n} + \frac{C_{f} C_{L}}{C_{f} + C_{L}}} \cdot V_{i s t e p} < V_{i s t e p}
Vxstep=Cs+Cin+Cf+CLCfCLCs⋅Vistep<Vistep
当闭环增益(H(0))足够大时,
V
o
s
w
i
n
g
H
(
0
)
>
V
i
s
t
e
p
>
V
x
s
t
e
p
\frac{V_{o s w i n g}}{H(0) \textrm{ }} > V_{i s t e p} > V_{x s t e p}
H(0) Voswing>Vistep>Vxstep
当
2
⋅
I
S
S
g
m
>
V
o
s
w
i
n
g
H
(
0
)
\sqrt{2} \cdot \frac{I_{S S}}{g_{m}} > \frac{V_{o s w i n g}}{H(0) \textrm{ }}
2⋅gmISS>H(0) Voswing,即满足
g
m
I
D
=
2
V
o
v
<
2
2
⋅
H
(
0
)
V
o
s
w
i
n
g
\frac{g_{m}}{I_{D}} = \frac{2}{V_{o v}} < 2 \sqrt{2} \cdot \frac{H(0)}{V_{o s w i n g}}
IDgm=Vov2<22⋅VoswingH(0)
V
o
v
>
1
2
H
(
0
)
⋅
V
o
s
w
i
n
g
V_{o v} > \frac{1}{\sqrt{2} H(0)} \cdot V_{o s w i n g}
Vov>2H(0)1⋅Voswing
运放不会进入压摆的状态。
6.虚地点电压
假设建立过程中,OTA栅端始终不存在瞬态电流,则阶跃电压加入的瞬间,各个节点的瞬态压降由电容分压决定(认为运放尚未开始工作),电容网络如下图所示
根据KCL
(
V
i
−
V
s
)
⋅
s
C
s
=
V
x
⋅
C
p
a
r
+
(
V
x
−
V
o
)
⋅
C
f
\left(V_{i} - V_{s}\right) \cdot s C_{s} = V_{x} \cdot C_{p a r} + \left(V_{x} - V_{o}\right) \cdot C_{f}
(Vi−Vs)⋅sCs=Vx⋅Cpar+(Vx−Vo)⋅Cf
V
x
=
V
i
C
s
+
V
o
C
f
C
s
+
C
f
+
C
p
a
r
V_{x} = \frac{V_{i} C_{s} + V_{o} C_{f}}{C_{s} + C_{f} + C_{p a r}}
Vx=Cs+Cf+CparViCs+VoCf
仅考虑线性建立时
V
o
u
t
(
t
)
=
−
C
s
C
f
⋅
V
i
s
t
e
p
⋅
T
(
0
)
1
+
T
(
0
)
⋅
[
1
−
(
1
+
ω
p
ω
z
)
e
−
t
τ
]
V_{o u t} \left(t\right) = - \frac{C_{s}}{C_{f}} \cdot V_{i s t e p} \cdot \frac{T \left(0\right)}{1 + T \left(0\right)} \cdot \left[1 - \left(1 + \frac{\omega_{p}}{\omega_{z}}\right) e^{- \frac{t}{\tau}}\right]
Vout(t)=−CfCs⋅Vistep⋅1+T(0)T(0)⋅[1−(1+ωzωp)e−τt]
则虚地点的瞬态电压为
V
x
(
t
)
=
C
s
C
s
+
C
f
+
C
p
a
r
⋅
V
i
s
t
e
p
⋅
(
1
−
T
(
0
)
1
+
T
(
0
)
[
1
−
(
1
+
ω
p
ω
z
)
e
−
t
τ
]
)
V_{x} \left(t\right) = \frac{C_{s}}{C_{s} + C_{f} + C_{p a r}} \cdot V_{i s t e p} \cdot \left(1 - \frac{T \left(0\right)}{1 + T \left(0\right)} \left[1 - \left(1 + \frac{\omega_{p}}{\omega_{z}}\right) e^{- \frac{t}{\tau}}\right]\right)
Vx(t)=Cs+Cf+CparCs⋅Vistep⋅(1−1+T(0)T(0)[1−(1+ωzωp)e−τt])
忽略静态建立误差,则虚地点瞬态电压可以写为
V
x
(
t
)
=
C
s
C
s
+
C
f
+
C
p
a
r
⋅
V
i
s
t
e
p
⋅
(
1
+
ω
p
ω
z
)
e
−
t
τ
V_{x} \left(t\right) = \frac{C_{s}}{C_{s} + C_{f} + C_{p a r}} \cdot V_{i s t e p} \cdot \left(1 + \frac{\omega_{p}}{\omega_{z}}\right) e^{- \frac{t}{\tau}}
Vx(t)=Cs+Cf+CparCs⋅Vistep⋅(1+ωzωp)e−τt
Appendix
matlab建模,根据建立时间和建立精度要求迭代求解跨导
% Parameter analysis for SC-INT
% Consisting slew and linear settling
clear all
fs = 4e6;
tsettle = 0.9 * 1/2* 1/fs;
N_bit = 24; % settling resolution
cs = 300e-15; % equivalent sampling capacitor
cin1 = 1.8e-12;
cref = 2.4e-12;
cint1 = 12e-12;
cl = 2e-12; % load cap
vistep = -16;
iter = 200;
gm = ones(1,iter+1)*1e-3; % start from 1mS
gmoverid = 12;
cggovergm = 0.067e-15/(1e-6) % gate cap w.r.t gm (fF/uS)
for i = 1:iter
cpar = gm(i) * cggovergm + cin1 + cref - cs;
cjunc = cpar/8 * 2; % cdd of cascode FETs, approx 1/8 of Cgg for n/p MOSTs
beta = cint1/(cs + cint1 + cpar) % feedback ratio
cltot = cl + (1-beta) * cint1;
% input voltage step feedforward
vxstep = vistep * cs / (cs + cpar + cint1 * cl / (cint1 + cl)); % virtual ground voltage
vostep = vxstep * cint1 / (cint1 + cl);
vo = zeros(1,ceil(tsettle * 1e9/0.1)) + vostep; % calculate Vo according to settling time
% slew settling
Iss = 2 * gm(i) / gmoverid;
SR = Iss / cltot;
tau = cltot / (beta * gm(i));
if abs(vxstep) <= sqrt(2) * Iss / gm(i) % without slew
tslew = 0;
voslew = 0;
tlineq = 0;
else
tslew = (abs(vxstep) - sqrt(2) * Iss / gm(i)) / (beta * SR);
for j = 1:ceil(tslew*1e11)
t = j / 1e11;
vo(j) = vostep + t * SR;
end
voslew = SR * tslew + vostep;
tlineq = -tau * log(1 - (1 - beta * cint1 / (cint1 + cl)) * 1/beta * (vxstep + sqrt(2) * Iss / gm(i)) / (cs / cint1 * vistep));
end
% linear settling
fbw = 1/(2 * pi * tau);
GBW = fbw / beta;
tlin = (N_bit + 1) * log(2) * tau + tau * log((cl + cint1) / (cl + (1 - beta) * cint1)) - tlineq;
for j = ceil(tslew * 1e11) + 1: ceil(tslew * 1e11)
t = (j - ceil(tslew * 1e11)) / 1e11;
vo(j) = -cs / cint1 * vistep * (1 - (1 + beta * cint1 / (cl + (1 - beta) * cint1)) * exp(-(tlineq + t) / tau));
end
ttot = tlin + tslew;
gm(i + 1) = (1 + (ttot - tsettle) * 1e6) * gm(i); % LMS based error feedback
end
vx = (vistep * cs + vo * cint1) / (cs + cint1 + cpar); % KCL, virtual gnd voltage
figure(1)
plot(0.01 : 0.01 : ceil(tsettle * 1e11) / 100, [0 vo(1 : end - 1)], 'linewidth', 2); hold on
plot(0.01 : 0.01 : ceil(tsettle * 1e11) / 100, [0 vx(1 : end - 1)], 'linewidth', 2); hold on
plot([tslew tslew] * 1e9 + 1, [-5 2], 'linestyle', '--', 'color', 'g'); hold on
plot([0 tslew * 1e9 + 15], [0 0], 'linestyle', '--', 'color', 'm'); hold on
plot([0 tslew * 1e9 + 15], [cs / cint1 * (-vistep), cs / cint1 * (-vistep)], 'linestyle', '--', 'color', 'c'); hold off
xlabel('Settling Time /ns');
ylabel('Transient Voltage /V');
title('Transient Voltage of OTA output');
axis([0 tsettle * 1e9 + 15 -2.5 1.5]);
legend('Vout', 'Vx', 'slew time', 'loaction', 'southeast');
figure(2)
err_dynamic = 20 * log10(1 - vo ./ (-cs / cint1 * vistep));
plot(0.01 : 0.01 : ceil(tsettle * 1e11) / 100, err_dynamic); hold on
plot([tslew tslew] * 1e9 + 1, [-160 10], 'linestyle', '--', 'color', 'g'); hold on
line([0.01, ceil(tsettle * 1e11) / 100], [20 * log10(1/2 * 1/2^20), 20 * log10(1/2 * 1/2^20)]); hold off
xlabel('Settling Time /ns');
ylabel('Dynamic Settling Error /dB');
title('Dynamic Settling Error');
axis([0 tsettle*1e9+15 -160 10]);
瞬态建立波形如下图所示,红色曲线为虚地点电压变化,蓝色曲线为输出电压变化。
动态建立误差如下图所示,其中蓝色直线为20bit建立精度。