Gmt丶FFF 的集合 g

PS:如果读过题了可以跳过题目描述直接到题解部分
暂无提交链接

题目

题目背景

1363有一个无向图

题目描述

1363有一个无向图 G = ( V , E ) G=(V,E) G=(V,E), 其 中 V = 1 , 2 , … , n V=1,2,…,n V=12,n。 对 于 中 的 任 意 一 个 点 v v v, 有 两 个 相 关 的 点 权 f x ( v ) , f y ( v ) fx(v),fy(v) fx(v)fy(v) ( i , j ) ∈ E (i,j)∈E (i,j)E 当 且 仅 当 ∣ f x ( i ) − f x ( j ) ∣ + ∣ f y ( i ) − f y ( j ) ∣ ≤ d |fx(i)-fx(j)|+|fy(i)-fy(j)|≤d fx(i)fx(j)+fy(i)fy(j)d。 求 G G G 的最大团的点数。
最大团定义:
如果 U ⊆ V U⊆V UV U ≠ V U≠V U=V,且对任意两个顶点 u , v ∈ U u,v∈U uvU ( u , v ) ∈ E (u,v)∈E (u,v)E,则称 U U U G G G的完全子图。 G G G的完全子图 U U U G G G的团。 G G G的最大团是指 G G G的最大完全子图。

输入格式

输入第一行读入两个整数 n , d n,d n,d 分别表示 ∣ V ∣ |V| V 和连边的距离限制。
接下来 n n n 行,第 i i i 行两个整数表示点权。

输出格式

输出一个数表示最大的大小。

样例

输入

4 1
1 1
2 1
1 1
2 2

输出

3

解释

1 , 2 , 3 1,2,3 1,2,3 之间构成了一个团。(对应点权分别是(1,1),(2,1),(1,1))
而由于点1和点4之间不存在边(|1-2|+|1-2|=2>1),所以最大团的点数只能是3。

数据范围

测试点nx,y,d
1,2 1 ≤ n ≤ 10 1≤n≤10 1n10 1 ≤ x , y , d ≤ 100 1≤x,y,d≤100 1x,y,d100
3,4 1 ≤ n ≤ 500 1≤n≤500 1n500 1 ≤ x , y , d ≤ 1 0 3 1≤x,y,d≤10^3 1x,y,d103
5,6,7,8,9,10 1 ≤ n ≤ 3 ∗ 1 0 5 1≤n≤3*10^5 1n3105 1 ≤ x , y , d ≤ 1 0 8 1≤x,y,d≤10^8 1x,y,d108

题解

曼哈顿转切比雪夫

题目中要求的其实是一个图形中最远的两个点距离小于等于d的,所以去框它的时候其实是一个斜了 45 ° 45\degree 45°的正方形(后面称它为菱形),这样很不方便处理,那么我们考虑使用人类智慧旋转 45 ° 45\degree 45°
( x , y ) (x,y) (x,y)—> ( x − y , x + y ) (x-y,x+y) (xy,x+y)

扫描线

就直接用扫描线的模板,注意里面的线段树要改成维护区间最大值的,pushup要把 > 0 >0 >0改成 ! = 0 !=0 !=0.

代码实现

//Gmt丶FFF 的集合 g
#pragma GCC optimize(3)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int n,d;
int ans;
int lazy[2500010];//标记了这条线段出现的次数
int s[2500010]; 

struct w{
	int x,y1,y2,flag;
}a[2500010];//坐标

struct node{
	int l,r;
	int sum;
}cl[2500010];//线段树

void in(int &x){
	int nt;
	x=0;
	while(!isdigit(nt=getchar()));
	x=nt^'0';
	while(isdigit(nt=getchar())){
		x=(x<<3)+(x<<1)+(nt^'0');
	}
}

bool cmp(w x,w y){
	return x.x==y.x?x.flag>y.flag:x.x<y.x;
}

void pushup(int rt){
	if(lazy[rt]!=0){
		lazy[rt<<1]+=lazy[rt];
		lazy[(rt<<1)|1]+=lazy[rt];
		cl[rt<<1].sum+=lazy[rt];
		cl[(rt<<1)|1].sum+=lazy[rt];
		lazy[rt]=0;
	}
}

void build(int rt,int l,int r){
	if(r-l>1){
		cl[rt].l=s[l];
		cl[rt].r=s[r];
		build((rt<<1),l,(l+r)>>1);
		build(((rt<<1)|1),((l+r)>>1),r);
	}
	else{
		cl[rt].l=s[l];
		cl[rt].r=s[r];
	}
	return;
}

void update(int rt,int y1,int y2,int flag){
	if(cl[rt].l==y1&&cl[rt].r==y2){
		lazy[rt]+=flag;
		cl[rt].sum+=flag;
	}
	else{
		pushup(rt);
		if(cl[(rt<<1)].r>y1){
			update((rt<<1),y1,min(cl[(rt<<1)].r,y2),flag);
		}
		if(cl[((rt<<1)|1)].l<y2){
			update(((rt<<1)|1),max(cl[((rt<<1)|1)].l,y1),y2,flag);
		}
		cl[rt].sum=max(cl[rt<<1].sum,cl[(rt<<1)|1].sum);
	}
}

int main(){
	register int i;
	in(n),in(d);
	for(i=0;i<n;++i){
		in(a[i].x),in(a[i].y1);
	}
	for(i=0;i<n;++i){
		a[i].x=a[i].x-a[i].y1;
		a[i].y1=a[i].x+(a[i].y1<<1);
		a[i+n].y2=a[i].y2=a[i].y1+d+1;
		a[i].flag=1;
		a[i+n].x=a[i].x+d;
		a[i+n].y1=a[i].y1;
		a[i+n].flag=-1;
		s[i+1]=a[i].y1;
		s[i+n+1]=a[i].y2;
	}//曼哈顿转切比雪夫
	sort(s+1,s+(n<<1)+1);//离散化 
	sort(a,a+(n<<1),cmp);//把矩形的边按横坐标从小到大排序
	build(1,1,(n<<1));
	update(1,a[0].y1,a[0].y2,a[0].flag);
	for(i=1;i<(n<<1);++i){
		ans=max(ans,cl[1].sum);
		update(1,a[i].y1,a[i].y2,a[i].flag);
	}
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月半流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值