洛谷 P3263 [JLOI2015]有意义的字符串

PS:如果读过题了可以跳过题目描述直接到题解部分
提交链接:洛谷 P3263 [JLOI2015]有意义的字符串

题目

题目描述

B 君有两个好朋友,他们叫宁宁和冉冉。有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求

⌊ ( b + d 2 ) n ⌋ m o d   p \lfloor ( \frac{b+\sqrt{d}}{2} ) ^n \rfloor \mathrm{mod} \ p ⌊(2b+d )nmod p

其中 p = 7528443412579576937 p=7528443412579576937 p=7528443412579576937

输入格式

一行三个整数 b;d;n

输出格式

一行一个数表示模 7528443412579576937 之后的结果。

样例 #1

样例输入 #1

1 5 9

样例输出 #1

76

提示

其中 0 < b 2 ≤ d < ( b + 1 ) 2 ≤ 1 0 18 0<b^2 \le d<(b+1)^2 \le 10^{18} 0<b2d<(b+1)21018, n ≤ 1 0 18 n \le 10^{18} n1018,并且 b mod 2=1,d mod 4=1

题解

看到 ( b + d 2 ) n ( \frac{b+\sqrt{d}}{2} ) ^n (2b+d )n 的时候,数学比较好的人应该就会反应出一个平方差公式,所以就会想到 ( b − d 2 ) n ( \frac{b-\sqrt{d}}{2} ) ^n (2bd )n,那么我们会发现,这两个是方程 x 2 − b x + b 2 − d 4 = 0 x^2-bx+\frac{b^2-d}{4}=0 x2bx+4b2d=0的两根。
移项可得: x 2 = b x + b 2 − d 4 x^2=bx+\frac{b^2-d}{4} x2=bx+4b2d
再同时乘以 x n − 2 x^{n-2} xn2可得: x n = b x n − 1 + b 2 − d 4 x n − 2 x^n=bx^{n-1}+\frac{b^2-d}{4}x^{n-2} xn=bxn1+4b2dxn2
f i = ( b + d 2 ) i + ( b − d 2 ) i f_i=( \frac{b+\sqrt{d}}{2} ) ^i+( \frac{b-\sqrt{d}}{2} ) ^i fi=(2b+d )i+(2bd )i,则 f i f_i fi为整数,且 f i = b f i − 1 + b 2 − d 4 f i − 2 f_i=bf_{i-1}+\frac{b^2-d}{4}f_{i-2} fi=bfi1+4b2dfi2 f 0 = 2 f_0=2 f0=2 f 1 = b f_1=b f1=b,所以可以用矩阵乘法求出 f n f_n fn(因为会爆long long,所以推荐用__int128)

最后当 b 2 ≠ d b^2≠d b2=d n n n为偶数的时候,答案为 f n − 1 f_n-1 fn1,否则为 f n f_n fn

注意不要把矩阵初始化的时候打错了,我调了一个多小时,最后发现是初始化的时候有两个写反了。

代码实现

100pts

//洛谷 P3263 [JLOI2015]有意义的字符串
#pragma GCC optimize(3)
#include<iostream>
#include<cstdio>
using namespace std;
const __int128 p=7528443412579576937;
__int128 b,d,n;
__int128 z[2][2];
__int128 a[2][2];
__int128 s[2][2];

void mi(__int128 n){
	while(n){
		if(n&1){
			for(int i=0;i<=1;++i){
				for(int j=0;j<=1;++j){
					s[i][j]=(z[i][0]*a[0][j]+z[i][1]*a[1][j])%p;
				}
			}
			for(int i=0;i<=1;++i){
				for(int j=0;j<=1;++j){
					a[i][j]=s[i][j];
				}
			}
		}
		for(int i=0;i<=1;++i){
			for(int j=0;j<=1;++j){
				s[i][j]=(z[i][0]*z[0][j]+z[i][1]*z[1][j])%p;
			}
		}
		for(int i=0;i<=1;++i){
			for(int j=0;j<=1;++j){
				z[i][j]=s[i][j];
			}
		}
		n>>=1;
	}
}

void in(__int128 &x){
	int nt;
	x=0;
	while(!isdigit(nt=getchar()));
	x=nt^'0';
	while(isdigit(nt=getchar())){
		x=(x<<3)+(x<<1)+(nt^'0');
	}
}

inline void wr(__int128 x)
{
	if(x<0) putchar('-'),x=-x;
	if(x>9) wr(x/10);
	putchar(x%10+'0');
}

int main(){
	in(b),in(d),in(n);
	z[0][1]=1;
	z[1][0]=((d-b*b)/4)%p;
	z[1][1]=b;
	a[0][0]=1;
	a[1][1]=1;
	mi(n);
	if(b*b!=d&&n%2==0){
		wr((a[0][0]*2%p+b*a[0][1]-1)%p);
	}
	else{
		wr((a[0][0]*2%p+b*a[0][1])%p);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月半流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值