用tensorflow.keras模块化搭建神经网络模型

资料来源:北京大学 曹建教授的课程 人工智能实践:TensorFlow笔记

使用八股搭建神经网络
在这里插入图片描述
其中第三步使用Sequential只能搭建简易的全连接模型,如果是有跳转的卷积网络或者其他复杂设计的网络需要自己创建一个类来设计;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
利用鸢尾花数据集来搭建网络举例:

# 用sequential或自己搭建model类
import tensorflow as tf
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
# ******************
# 可以自己搭建模型类,效果一样
# class IrisModel(Model):
#     def __init__(self):
#         super(IrisModel, self).__init__()
#         self.d1 = Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
# 
#     def call(self, x):
#         y = self.d1(x)
#         return y
# 
# model = IrisModel()
# ******************
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

model.summary()

使用mnist数据集搭建神经网络

import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras import Model

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

class MnistModel(Model):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10, activation='softmax')

    def call(self, x):
        x = self.flatten(x)
        x = self.d1(x)
        y = self.d2(x)
        return y

model = MnistModel()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值