[OpenCL] 利用opencl-image2D,读取一张JPG图像,并转为灰度图。

接上一篇文章中,利用opencl-buffer灰度化图像以外,还可以使用image2D进行操作。

本文利用opencv读取一张jpg图像,将数据传入opencl-image2D中,使用kernel快速灰度化图像,并且保存输出图像到本地。

首先读取和保存图像接口:

1.data_io.h

#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>

#ifdef APPLE        //平台相关代码
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif

cl_int Load_image2D_by_opencv(const char * filename,cl_mem *imageObjects,cl_context context,int &h,int &w);

void Show_pic_by_opencv(unsigned char  *rd);

2.data_io.cpp

#include "data_io.h"

 cv::Mat srcImage,dst_Image;

cl_int Load_image2D_by_opencv(const char * filename,cl_mem *imageObjects,cl_context context,int &img_h,int &img_w)
{
    
    //3.加载图像

    cl_int errNum;
    srcImage = cv::imread(filename);
    
    
    img_h = srcImage.rows;
    img_w = srcImage.cols;
    
    dst_Image= cv::Mat(srcImage.size(), srcImage.type());
   
     u_char *rd = new u_char[img_h* img_w *4];
	 memcpy(rd, static_cast<u_char*>(srcImage.data), img_h* img_w *3);//转化函数,注意Mat的data成员	


    // 创建OpenCL图像对象
    cl_image_format clImageFormat;//图像格式属性
    clImageFormat.image_channel_order = CL_RGBA;
    clImageFormat.image_channel_data_type = CL_UNORM_INT8;

    imageObjects[0]  = clCreateImage2D(context,
                            CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                            &clImageFormat,
                            img_w,
                            img_h,
                            0,
                            rd,
                            &errNum);

                    
                            
    std::cerr << "L4.2" <<std::endl;
    return errNum;
    

}



void Show_pic_by_opencv(u_char *rd)
{
    
    dst_Image = cv::Mat(dst_Image.rows, dst_Image.cols, dst_Image.type(), (void *)rd); //h_,w_是图像长宽
    cv::imwrite("../data/des_img/00grayImage.jpg", dst_Image);

  
}

其次,主函数:

3.main.cpp

#include <iostream>
#include <fstream>
#include <sstream>


#ifdef APPLE        //平台相关代码
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif

#include "data_io.h"


//在第一个平台中创建只包括GPU的上下文
cl_context CreateContext()
{
    cl_int errNum;
    cl_uint numPlatforms;
    cl_platform_id firstPlatformId;
    cl_context context = NULL;
    
    
    // 选择第一个平台
    errNum = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);
    if (errNum != CL_SUCCESS || numPlatforms <= 0)
    {
        std::cerr << "Failed to find any OpenCL platforms." << std::endl;
        return NULL;
    }

    // 接下来尝试通过GPU设备建立上下文
    cl_context_properties contextProperties[] =
    {
        CL_CONTEXT_PLATFORM,
        (cl_context_properties)firstPlatformId,
        0
    };
    context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_GPU,
                                      NULL, NULL, &errNum);

    if (errNum != CL_SUCCESS)
    {
        std::cout << "Could not create GPU context, trying CPU..." << std::endl;
        context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_CPU,
                                          NULL, NULL, &errNum);
        if (errNum != CL_SUCCESS)
        {
            std::cerr << "Failed to create an OpenCL GPU or CPU context." << std::endl;
            return NULL;
        }
    }
 
    return context;
}


//在第一个设备上创建命令队列
cl_command_queue CreateCommandQueue(cl_context context, cl_device_id *device)
{
    cl_int errNum;
    cl_device_id *devices;
    cl_command_queue commandQueue = NULL;
    size_t deviceBufferSize = -1;
 
    // 首先获得设备的信息
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceBufferSize);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Failed call to clGetContextInfo(...,GL_CONTEXT_DEVICES,...)";
        return NULL;
    }
 
    if (deviceBufferSize <= 0)
    {
        std::cerr << "No devices available.";
        return NULL;
    }
 
    //为设备分配内存
    devices = new cl_device_id[deviceBufferSize / sizeof(cl_device_id)];
    errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceBufferSize, devices, NULL);
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Failed to get device IDs";
        return NULL;
    }
 
    // 选择第一个设备并为其创建命令队列
    commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);
    if (commandQueue == NULL)
    {
        std::cerr << "Failed to create commandQueue for device 0";
        return NULL;
    }
    
    //释放信息
    *device = devices[0];
    delete [] devices;
    return commandQueue;
}
 

 //  创建OpenCL程序对象
cl_program CreateProgram(cl_context context, cl_device_id device, const char* fileName)
{
    cl_int errNum;
    cl_program program;
 
    std::ifstream kernelFile(fileName, std::ios::in);
    if (!kernelFile.is_open())
    {
        std::cerr << "Failed to open file for reading: " << fileName << std::endl;
        return NULL;
    }
 
    std::ostringstream oss;
    oss << kernelFile.rdbuf();
 
    std::string srcStdStr = oss.str();
    const char *srcStr = srcStdStr.c_str();
    program = clCreateProgramWithSource(context, 1,
                                        (const char**)&srcStr,
                                        NULL, NULL);
    if (program == NULL)
    {
        std::cerr << "Failed to create CL program from source." << std::endl;
        return NULL;
    }
 
    errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    if (errNum != CL_SUCCESS)
    {
        // 输出错误信息
        char buildLog[16384];
        clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
                              sizeof(buildLog), buildLog, NULL);
 
        std::cerr << "Error in kernel: " << std::endl;
        std::cerr << buildLog;
        clReleaseProgram(program);
        return NULL;
    }
 
    return program;
}


//获取最接近的倍数
size_t RoundUp(int groupSize, int globalSize)
{
    int r = globalSize % groupSize;
    if(r == 0)
    {
         return globalSize;
    }
    else
    {
         return globalSize + groupSize - r;
    }
}


//清除资源
void Cleanup(cl_context context, cl_command_queue commandQueue,
             cl_program program, cl_kernel kernel, cl_mem imageObjects[2],
             cl_sampler sampler)
{
    for (int i = 0; i < 2; i++)
    {
        if (imageObjects[i] != 0)
            clReleaseMemObject(imageObjects[i]);
    }
    if (commandQueue != 0)
        clReleaseCommandQueue(commandQueue);
 
    if (kernel != 0)
        clReleaseKernel(kernel);
 
    if (program != 0)
        clReleaseProgram(program);
    
    if (sampler != 0)
        clReleaseSampler(sampler);

    if (context != 0)
        clReleaseContext(context);
 
}

int main()
{

    //initial varibles
    cl_int errNum;
    cl_device_id device = 0;
    cl_context context = 0;
    cl_program program = 0;
    cl_kernel kernel = 0;
    cl_command_queue commandQueue = 0;
    cl_sampler sampler = 0;
    cl_mem imageObjects[2] = { 0, 0 };
    int img_h , img_w ;
    
     // 1.选择platform,创建contex上下文
    context = CreateContext();
    if (context == NULL)
    {
        std::cerr << "Failed to create OpenCL context." << std::endl;
        return 1;
    }

    // 2.创建命令队列
    commandQueue = CreateCommandQueue(context, &device);
    if (commandQueue == NULL)
    {
        std::cerr <<"CreateCommandQueue failed"<<std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }
    
    
    // 3. 确保设备支持这种图像格式
    cl_bool imageSupport = CL_FALSE;
    clGetDeviceInfo(device, CL_DEVICE_IMAGE_SUPPORT, sizeof(cl_bool),
                    &imageSupport, NULL);
    if (imageSupport != CL_TRUE)
    {
        std::cerr << "OpenCL device does not support images." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        
        return 1;
    }
    
     //4.准备输入数据 
    
    std::cerr << "L4." << std::endl;
    errNum=Load_image2D_by_opencv("../data/src_img/test.jpg",imageObjects,context,img_h,img_w);
    if (errNum != CL_SUCCESS)
    { 
        std::cerr << "Load_image failed." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;

    }

    // 5.创建输出的图像对象
    cl_image_format clImageFormat;
    clImageFormat.image_channel_order = CL_RGBA;
    clImageFormat.image_channel_data_type = CL_UNORM_INT8;
    imageObjects[1] = clCreateImage2D(context,
                                       CL_MEM_WRITE_ONLY,
                                       &clImageFormat,
                                       img_w,
                                       img_h,
                                       0,
                                       NULL,
                                       &errNum);
 
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error creating CL output image object." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return errNum;
    }
   

       // 创建采样器对象
    sampler = clCreateSampler(context,
                              CL_FALSE, // 非规范化坐标
                              CL_ADDRESS_CLAMP_TO_EDGE,
                              CL_FILTER_NEAREST,
                              &errNum);
 
    
    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error creating CL sampler object." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }
    //6.创建OpenCL-program对象
    
    program = CreateProgram(context, device, "gray.cl");
    if (program == NULL)
    {
        std::cerr <<"CreateProgram failed"<<std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }
    
    // 7.创建OpenCL核

    kernel = clCreateKernel(program, "kernel_gray", NULL);
    
    if (kernel == NULL)
    {
        std::cerr << "Failed to create kernel" << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }
    
 
    //8. 设定参数
    
    errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &imageObjects[0]);
    errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &imageObjects[1]);
    errNum |= clSetKernelArg(kernel, 2, sizeof(cl_sampler), &sampler);
    errNum |= clSetKernelArg(kernel, 3, sizeof(cl_int), &img_w);
    errNum |= clSetKernelArg(kernel, 4, sizeof(cl_int), &img_h);

    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error setting kernel arguments." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    
    size_t localWorkSize[2] = { 32, 4 };
    size_t globalWorkSize[2] =  { RoundUp(localWorkSize[0], img_w),
                                  RoundUp(localWorkSize[1], img_h) };

    //9.启动内核,内核执行完成后,会将evt置为CL_SUCCESS/CL_COMPLETE
    cl_event evt;
    errNum = clEnqueueNDRangeKernel(commandQueue, kernel,  
                               2, 0, globalWorkSize, localWorkSize, 
                               0, NULL, &evt);  
    clWaitForEvents(1, &evt);   //等待命令事件发生
    clReleaseEvent(evt);
    
    //10.读回数据
    unsigned char *read_data = new unsigned char [img_w * img_h * 4];

    size_t origin[3] = { 0, 0, 0 };
    size_t region[3] = { size_t(img_w), size_t(img_h), 1};
    errNum = clEnqueueReadImage(commandQueue, imageObjects[1], CL_TRUE,
                                origin, region, 0, 0, read_data,
                                0, NULL, NULL);

    if (errNum != CL_SUCCESS)
    {
        std::cerr << "Error reading result buffer." << std::endl;
        Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
        return 1;
    }

    //显示图像
    Show_pic_by_opencv(read_data);
    
    Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
    
    std::cout<<"hello world"<<std::endl;

    return 0;
}

最后,实际灰度图像的kernel函数

4.gray.cl


__kernel void kernel_gray(__read_only image2d_t srcImg,__write_only image2d_t dstImg,
                              sampler_t sampler,
                              int width, int height)
{
    //float kernelWeights[4] = { 0.299f, 0.587f, 0.114f, 1.0f };

        int x = get_global_id(0);
        int y = get_global_id(1);
          
        int2 outImageCoord = (int2) (x, y);
        
        if (outImageCoord.x < width && outImageCoord.y < height)
        {
              float outColor1;
              outColor1 += ((read_imagef(srcImg, sampler, (int2)(x, y)) ).x)*0.2989f;
              outColor1 +=((read_imagef(srcImg, sampler, (int2)(x, y)) ).y)*0.5870f;
              outColor1 += ((read_imagef(srcImg, sampler, (int2)(x, y)) ).z)*0.1140f;
              float outColor4 = ((read_imagef(srcImg, sampler, (int2)(x, y)) ).w);
              write_imagef(dstImg, outImageCoord,(float4)(outColor1, outColor1, outColor1, outColor4));
           
        }

}

5.Makefile

demo : main.cpp data_io.cpp
	g++ `pkg-config opencv4 --cflags` main.cpp data_io.cpp -o demo `pkg-config opencv4 --libs` -D CL_TARGET_OPENCL_VERSION=100 -lOpenCL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值