Softmax回归的概念以及代码实现

回归 vs 分类

  • 回归估计是一个连续值
  • 分类是预测一个离散类别

从回归到多类分类

  • 回归

    • 单连续数值输出
    • 自然区间R
    • 跟真实值的区别作为损失
  • 分类

    • 多个输出
    • 输出i是预测为第i类的置信度

校验比例:Softmax

  • 输出匹配概率(非负,和为1)
    • y ^ = s o f t m a x ( o ) \hat y = softmax(o) y^=softmax(o)
    • y ^ i = e x p ( o i ) ∑ k e x p ( o k ) \large \hat y_i = \frac{exp(o_i)}{\sum_k exp(o_k)} y^i=kexp(ok)exp(oi)
    • 真实概率 y 和预测概率 y ^ \hat y y^的区别作为损失
  • softmax和交叉熵损失
    • 交叉熵常用来衡量两个概率的区别 H ( p , q ) = ∑ i − p i   l o g ( q i ) H(p,q) = \sum_i - p_i\ log(q_i) H(p,q)=ipi log(qi)
    • 将它作为损失 : l ( y , y ^ ) = − ∑ i   y i   l o g y ^ i = − l o g   y ^ y \large l(y,\hat y) = -\sum_i\ y_i\ log\hat y_i = -log\ \hat y_y l(y,y^)=i yi logy^i=log y^y
    • 其梯度是真实概率和预测概率的区别-
      • ∂ O i l ( y , y ^ ) = s o f t m a x ( o ) i − y \large ∂_{O_i}l(y,\hat y) = softmax(o)_i - y Oil(y,y^)=softmax(o)iy

总结

  • softmax回归是一个多类分类模型
  • 使用softmax操作子得到每个类的预测置信度
  • 使用交叉熵来衡量预测和标号的区别

代码实现

导入数据集,设置批量大小

  • 使用Fashion-MNIST数据集,并保持批量大小为256

  • import torch
    from torch import nn
    from d2l import torch as d2l
    
    batch_size = 256
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
    

初始化模型参数

  • softmax回归的输出层是一个全连接层。 只需在Sequential中添加一个带有10个输出的全连接层。

  • 同样,在这里Sequential并不是必要的, 但它是实现深度模型的基础。

  • 以均值0和标准差0.01随机初始化权重

  • # PyTorch不会隐式地调整输入的形状。因此,
    # 我们在线性层前定义了展平层(flatten),来调整网络输入的形状 
    # nn.flatten将任何维度的tensor变成2d的tensor(0维保留,剩下的维度展成向量)
    net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
    
    def init_weights(m):
        if type(m) == nn.Linear:
            nn.init.normal_(m.weight, std=0.01) # 均值为0 方差为0.01
    
    net.apply(init_weights);
    

**审视softmax :关于上下溢出的问题

  • softmax函数 y ^ j = s o f t m a x ( o ) j = e x p ( o j ) ∑ k e x p ( o k ) \large \hat y_j=softmax(o)_{j} = \frac{exp(o_{j})}{\sum_kexp(o_{k})} y^j=softmax(o)j=kexp(ok)exp(oj), 其中 y ^ j \hat y_j y^j是预测的概率分布。 o j o_j oj是未规范化的预测 o 的第 j 个元素。

  • 如果 o k o_k ok 中的一些数值非常大, 那么 e x p ⁡ ( o k ) exp⁡(o_k) exp(ok)可能大于数据类型容许的最大数字,即上溢(overflow)。 这将使分母或分子变为inf(无穷大), 最后得到的是0、infnan(不是数字)的 y ^ j \hat y_j y^j。 在这些情况下,我们无法得到一个明确定义的交叉熵值。

    • 解决这个问题的一个技巧是: 在继续softmax计算之前,先从所有 o k o_k ok 中减去 m a x ( o k ) max(o_k) max(ok)。 你可以看到每个 o k o_k ok按常数进行的移动不会改变softmax的返回值:
    • y ^ j = e x p ( o j − m a x ( o k ) ) e x p ( m a x ( o k ) ) ∑ k e x p ( o k − m a x ( o k ) ) e x p ( m a x ( o k ) ) = e x p ( o j − m a x ( o k ) ) ∑ k e x p ( o k − m a x ( o k ) ) \large \hat y_j = \frac{exp(o_{j} - max(o_k))exp(max(o_k))}{\sum_k exp(o_{k}- max(o_k)) exp( max(o_k))} = \frac{exp(o_{j} - max(o_k))}{\sum_k exp(o_{k}- max(o_k))} y^j=kexp(okmax(ok))exp(max(ok))exp(ojmax(ok))exp(max(ok))=kexp(okmax(ok))exp(ojmax(ok))
  • 在减法和规范化步骤之后,可能有些 o j − m a x ( o k ) o_{j} - max(o_k) ojmax(ok)具有较大的负值。 由于精度受限, o j − m a x ( o k ) o_{j} - max(o_k) ojmax(ok)将有接近零的值,即下溢(underflow)。

  • 这些值可能会四舍五入为零,使 y ^ j \hat y_j y^j为零, 并且使得 l o g ⁡ ( y ^ j ) log⁡(\hat y_j) log(y^j)的值为-inf

  • 反向传播几步后,我们可能会发现出现很多的nan结果。

  • 尽管我们要计算指数函数,但我们最终在计算交叉熵损失时会取它们的对数。 通过将softmax和交叉熵结合在一起,可以避免反向传播过程中可能会困扰我们的数值稳定性问题。

  • 如下面的等式所示,我们避免计算 e x p ( o j − m a x ( o k ) ) exp(o_{j} - max(o_k)) exp(ojmax(ok)), 而可以直接使用 o j − m a x ( o k ) o_{j} - max(o_k) ojmax(ok),因为log⁡(exp⁡(⋅))被抵消了。

    • l o g ( y ^ j ) = l o g ( e x p ( o j − m a x ( o k ) ) ∑ k e x p ( o k − m a x ( o k ) ) ) \large log(\hat y_j) = log(\frac{exp(o_{j} - max(o_k))}{\sum_k exp(o_{k}- max(o_k)) }) log(y^j)=log(kexp(okmax(ok))exp(ojmax(ok)))

      = l o g ( e x p ( o j − m a x ( o k ) ) ) − l o g ( ∑ k e x p ( o k − m a x ( o k ) ) ) \large= log(exp(o_{j} - max(o_k)))-log(\sum_k exp(o_{k}- max(o_k))) =log(exp(ojmax(ok)))log(kexp(okmax(ok)))

      = o j − m a x ( o k ) − l o g ( ∑ k e x p ( o k − m a x ( o k ) ) ) \large= o_{j} - max(o_k)-log(\sum_k exp(o_{k}- max(o_k))) =ojmax(ok)log(kexp(okmax(ok)))

定义交叉熵损失函数

  • 在交叉熵损失函数中传递未规范化的预测,并同时计算softmax及其对数

    loss = nn.CrossEntropyLoss(reduction='none')
    

优化算法

  • 学习率为0.1的小批量随机梯度下降

  • trainer = torch.optim.SGD(net.parameters(), lr=0.1)
    

训练

# 调用之前定义的训练函数来训练模型。
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值