关于大模型应用过程中的记忆功能管理问题,以及解决方案,收藏这一篇就够了!!

前言

大模型应用的很多功能包括记忆管理,需要的不仅仅只是技术问题,还需要足够的工程化能力才能解决。

众所周知,大模型是没有记忆功能的,因此记忆管理就成为大模型应用过程中必不可少的一个环节;虽然说记忆管理说起来很简单,但在实际操作中还是存在很多问题。

比如说,随着记忆的增加token成本的上升,大模型窗口的限制,记忆的存储问题等等。

因此,今天就从项目的实际操作中来详细了解一下大模型的记忆功能;开发框架是基于langchain的记忆管理模块。

大模型记忆管理问题

大模型记忆管理问题主要存在于NLP任务的对话场景中,其本质就类似于我们平常人聊天需要有一个上下文;比如说你朋友在聊天你突然过来,肯定要先问一下他们在聊什么,或者在旁边听一下他们在聊什么,这时你才知道怎么开口。

而大模型由于自身的原因导致其没有记忆功能,也就是说每次对话对大模型来说都是一次全新的交流;这玩意就类似于一个健忘症的人,上一句刚说完他就忘了刚说的是什么。

因此,大模型记忆管理就应运而生了;记忆管理说起来也很简单,就是把每次和大模型的对话记录下来,你说了什么大模型说了什么;然后每次聊天的时候把这段对话记录一起输入到大模型中(拼接到提示词中),这样大模型就可以根据这段上下文知道你们聊了什么。

img

在langchain中封装了一些记忆功能的模块,主要是基于内存的会话记忆;当然,也有为解决分布式场景下的存储中间件(关系型数据库,redis缓存等),本质上就是把对话记录保存下来,在每次对话时再加载出来然后拼接到提示词中。

比如其中使用比较多的ConversationBufferMemory记忆,其实就是简单粗暴的把所有对话记录都保存下来;但这同样会带来一些问题,比如说随着对话次数的增长,对话记录会越来越长,这时token消耗就会越来越多;而更重要的是,大模型的窗口大小是有限制的,因此如果持续增长下去就会导致超长问题。

所以,这就有了会话缓存窗口记忆ConversationBufferWindowMemory,本质上来说就是给会话加了一个k值,目的就是只记录最近的k轮对话;比如说你对话了一百次,但我只记录最近的10次,这样既可以解决成本问题,也可以解决超长问题。

但这同样会有新的问题出现,那就是丢失了之前的对话记录,可能会导致上下文缺失;这就类似于两个人喝酒吹了两个小时的牛逼,突然说我们刚开始聊的啥,这时由于对话记录已经丢失,大模型就无法获得之前的上下文。

img

所以,为了解决这个问题,就设计了一个总结记忆功能;其原理就是把对话记录输入到另一个总结模型,让这个模型根据对话的内容总结其中的关键信息,这样就可以解决上下文丢失问题。

但由于需要多次访问大模型,以及随着对话的增多,总结的内容同样会增多,因此可能依然存在上下文窗口限制问题;而且由于大模型只关注文本头和尾,对文本中间内容处理效果不太好,因此依然会出现上下文缺失的情况。

所以,从以上问题来看,大模型记忆管理是一个复杂的过程,并且根据不同的场景需要选择合适的记忆管理方式。

而且在实际操作中,整个系统不可能只有一个人访问,因此需要根据不同的用户使用用户标识或者会话标识来区分不同用户的记忆数据;但同样,因为对话记录是保存在内存中或者第三方存储中间件中,但对话的时间是有限的,因此还需要做记忆的生命周期管理,也就是说用户一轮对话完成之后,可以在适当的时间清理掉不在需要的对话记录。

img

如以上代码,根据session_id会话id作为为每个用户都创建记忆功能,这个会话id可以根据不同的应用场景选择合适的唯一标识符;而且,在存储会话的过程中,设置一个last_active时间参数,当到达最长会话时间时,可以自动清理掉过期的会话记录。

img

这样就可以在技术上防止内存泄露,或者存储空间不足的问题。

当然,以上功能也仅仅只适用于部分应用场景,比如说在分布式环境下就不能使用基于内存的记忆存储,而需要借助外部存储工具,如redis等。因此,在具体的应用中,用户可以选择性地使用这些记忆工具,当然也可以完全自己开发一套记忆管理工具。

总之,大模型应用在学习过程和实际应用中还是存在一定的区别;有些问题需要通过技术本身来解决,而有些问题需要工程化的方式来避免或解决。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值