前言
之前讲过 DeepSeek + Cherry 搭建本地知识库,这样的知识库比较初级,上传的文件限制较多。无法满足更多个性化需求。今天我们来看看 DeepSeek + Dify 如何搭建自己的知识库。
Dify 作为同样开源的 AI 应用开发平台,提供完整的私有化部署方案。通过将本地部署的 DeepSeek 服务无缝集成到 Dify 平台,企业可以在确保数据隐私的前提下,在本地服务器环境内构建功能强大的 AI 应用。
以下是私有化部署方案的优势:
- 性能卓越:提供媲美商业模型的对话交互体验
- 环境隔离:完全离线运行,杜绝数据外泄风险
- 数据可控:完全掌控数据资产,符合合规要求
前置准备
硬件环境:
- CPU >= 2 Core
- 显存/RAM ≥ 16 GiB(推荐)
软件环境:
- Docker
- Docker Compose
- Dify 社区版
开始部署
1. 安装 Dify
gitclone https://github.com/langgenius/dify.git
# 速度太慢可以用这个 git clone https://gitee.com/dify_ai/dify
cddify/docker
cp.env.example .env # 创建配置文件
更新上传文件大小配置(非必须)
默认上传图片大小是10MB,上传视频大小是100MB,文件默认是50MB,如果有需要修改下面对应的参数。
打开上面复制出来的 .env 文件,修改如下参数:
# Upload image file size limit, default 10M.
UPLOAD_IMAGE_FILE_SIZE_LIMIT=10
# Upload video file size limit, default 100M.
UPLOAD_VIDEO_FILE_SIZE_LIMIT=100
# Upload audio file size limit, default 50M.
UPLOAD_AUDIO_FILE_SIZE_LIMIT=50
启动 Dify
docker compose up -d# 如果版本是 Docker Compose V1,使用以下命令:docker-compose up -d
如果 docker 拉取镜像太慢,可以设置镜像,加到后面即可:
"registry-mirrors": [
"https://hub.rat.dev",
"https://dockerhub.icu",
"https://docker.wanpeng.top",
"https://register.librax.org"
]
访问 Dify
设置管理员与登录,Dify 社区版默认使用 80 端口。
# 本地环境
http://localhost/install
登录后
2. 将 DeepSeek 接入至 Dify
接入在线 api 模型配置
如果本地没有部署 DeepSeek ,可以直接用硅基流动的 API 接入。
硅基流动
设置好后可以看到有很多模型可以选择:
接入本地部署的 DeepSeek
如果本地部署了 DeepSeek,可以接入本地的模型。点击 Dify 平台右上角头像 → 设置 → 模型供应商,选择 Ollama,点击安装。
这里用 Ollama 客户端,则需要在本机上部署 DeepSeek,Base URL 填写 http://本机IP:11434 即可。
再添加向量模型
点击保存即可。
最终系统模型设置
我这里直接使用硅基流动的了。
现在 DeepSeek 就正常接入到 Dify 啦。
知识库
创建知识库
分段选择
dify的分段有个好处,设置分段以后,可以实时预览,可以根据预览效果,自己实时调整分段策略。dify 建议首次创建知识库使用父子分段模式。
通用模式
系统按照用户自定义的规则将内容拆分为独立的分段。当用户输入问题后,系统自动分析问题中的关键词,并计算关键词与知识库中各内容分段的相关度。根据相关度排序,选取最相关的内容分段并发送给 LLM,辅助其处理与更有效地回答。
在该模式下,你需要根据不同的文档格式或场景要求,参考以下设置项,手动设置文本的分段规则。
-
分段标识符,默认值为
\n
,即按照文章段落进行分块。 -
分段最大长度,指定分段内的文本字符数最大上限,超出该长度时将强制分段。默认值为 500 Tokens,分段长度的最大上限为 4000 Tokens;
-
分段重叠长度,指的是在对数据进行分段时,段与段之间存在一定的重叠部分。这种重叠可以帮助提高信息的保留和分析的准确性,提升召回效果。建议设置为分段长度 Tokens 数的 10-25%;
-
文本预处理规则, 过滤知识库内部分无意义的内容。提供以下选项:
-
- 替换连续的空格、换行符和制表符
- 删除所有 URL 和电子邮件地址
这里选择通用模式看看效果:
父子模式
与通用模式相比,父子模式采用双层分段结构来平衡检索的精确度和上下文信息,让精准匹配与全面的上下文信息二者兼得。
其中,父区块(Parent-chunk)保持较大的文本单位(如段落),提供丰富的上下文信息;子区块(Child-chunk)则是较小的文本单位(如句子),用于精确检索。系统首先通过子区块进行精确检索以确保相关性,然后获取对应的父区块来补充上下文信息,从而在生成响应时既保证准确性又能提供完整的背景信息。你可以通过设置分隔符和最大长度来自定义父子区块的分段方式。
其基本机制包括:
-
子分段匹配查询:
-
- 将文档拆分为较小、集中的信息单元(例如一句话),更加精准的匹配用户所输入的问题。
- 子分段能快速提供与用户需求最相关的初步结果。
-
父分段提供上下文:
-
- 将包含匹配子分段的更大部分(如段落、章节甚至整个文档)视作父分段并提供给大语言模型(LLM)。
- 父分段能为 LLM 提供完整的背景信息,避免遗漏重要细节,帮助 LLM 输出更贴合知识库内容的回答。
选择父子模式看看效果:
这么看区别不是很大。
继续选择索引方式和检索设置,都采用推荐设置:
这样知识库就创建成功了,等待嵌入处理完成。
使用
创建应用
点击工作室,我们可以看到有很多丰富的应用,包括聊天助手、agent、工作流等 我们选择最简单的应用,聊天助手,点击聊天助手。
添加知识库
创建好后添加知识库
点击召回设置:
Score 阈值是设置本文片段的相似度阈值,这里设置 0.7 。
调试与预览
这样我们就可以发布了,发布之后返回工作室就可以看到刚刚创建的应用啦。
总结
DeepSeek + Dify 的知识库构建功能确实强大,有多种分段索引模式可选,里面还有不少可以深入研究的东西,后续会慢慢整合更新~
最后
为什么要学AI大模型
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!
DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。
与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

AI大模型系统学习路线
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。
AI大模型入门到实战的视频教程+项目包
看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
海量AI大模型必读的经典书籍(PDF)
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
600+AI大模型报告(实时更新)
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
AI大模型面试真题+答案解析
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
