“FinGPT: Enhancing Sentiment-Based Stock Movement Prediction with Dissemination-Aware and Context-Enriched LLMs”
金融市场对新闻和社交媒体高度敏感,情绪分析在现代金融预测中至关重要。传统情绪分析通常将情绪分为正面、负面和中性,LLMs的出现提升了情绪分析的准确性和解释能力。
本文提出了一种增强LLM驱动的基于情感的股票价格预测方法。通过提高股票价格的粒度和提供短期/长期分析指令,增强了对新闻的上下文理解。评估新闻传播的聚类,并结合市场影响以改善预测。实验结果显示,方法实现了63%的二分类准确率,相较于55%的基线有显著提升,尤其在高聚类比(>50%)下表现更佳。
论文地址:https://arxiv.org/pdf/2412.10823
一、摘要
金融情感分析对理解新闻对股价的影响至关重要,LLM因其文本分析能力被广泛应用。现有模型主要关注新闻内容,忽视传播范围,影响短期股价预测的准确性。当前方法缺乏足够的上下文数据和明确的提示,限制了LLM的解读能力。
本文提出一种数据驱动的方法,通过整合新闻传播范围、上下文数据和明确指令,提升LLM的情感基础股价预测。通过聚类公司相关新闻评估其影响力,丰富提示信息。构建指令调优数据集以微调LLM,实验结果显示预测准确性提高了8%。
二、简介
金融市场对新闻和社交媒体高度敏感,情绪分析在现代金融预测中至关重要。传统情绪分析通常将情绪分为正面、负面和中性,LLMs的出现提升了情绪分析的准确性和解释能力。现有方法多依赖单一新闻内容,忽视新闻传播的广度和上下文数据,限制了LLMs的解读能力。
本文提出一种新方法,通过聚类公司相关新闻,评估新闻的传播范围和影响,增强短期股价预测的准确性,实验结果显示预测准确性提高8%。
三、相关工作
利用文本和新闻进行股票预测并不新颖,已有研究使用推文和历史数据进行价格预测。大型语言模型(LLMs)能够更深入理解金融文本,捕捉新闻数据中的复杂关系,提升股票价格预测的准确性。LLMFactor(2024)通过知识引导提示实现短期预测,提供实时可解释的见解。Elahi和Taghvaei(2024)结合金融数据和新闻,采用检索增强技术进行3-6个月的长期预测。
本研究专注于数据准备过程,考虑新闻传播对股价的影响,为LLMs提供更精确的指令。采用标准的LLMs指令调优框架,基于数据组织作为基线,展示显著改进,方法具有广泛应用潜力。
四、问题设置和总体框架
目标。 基于新闻情绪预测每周股票价格走势,分为12个标签(U1-U5和D1-D5+)。
依据。 上周股票价格、近期新闻、公司基本面(季度更新,报告发布后三周纳入)。
模型输出。 识别2-4个重要因素,分为[积极发展]和[潜在担忧],并提供[预测与分析]。
重点。 聚焦数据处理和提示工程部分,遵循金融分析的标准框架。
五、方法
数据处理
高粒度股票价格信息(HG)。 通过引入每日收盘价和收益,提升预测性能,减少计算不确定性,并实现价格变动与新闻事件的精确时间对齐。
新闻聚类(HG-NC)。 针对每周超过200篇新闻的处理,采用聚类方法以提高效率,捕捉新闻影响的两个维度:报道频率和时间跨度。
-
数据收集: 从Finnhub API获取每周金融新闻数据。
-
主题聚类: 使用Sentence Transformers和BERTopic进行新闻主题聚类。
-
聚类质量评估:
高凝聚力聚类(相似度>0.6):选择中心文章作为代表,保留元数据。
低凝聚力聚类(相似度≤0.6):选择中心附近文章,限制主题大小为2。 -
主题选择策略: 高凝聚力聚类少于6时,补充最多4个低凝聚力聚类,以确保信息覆盖。
聚类方法优势。 通过BERTopic和余弦相似度评估,有效压缩大量新闻为代表性样本,量化新闻传播,增强股票价格预测能力。
提示工程:上下文增强的指令
为了适应新的数据格式,需增强对每日股票信息和新闻传播的分析。
HG部分,要求区分短期和长期新闻影响,短期新闻的影响通常在同周内已反映在股价中。
HG-NC部分,在HG基础上,构建新闻组件,使用代表性文章及其元数据,提供分析新闻传播对股价影响的指导。
指令微调
训练数据集将结构化输入(公司介绍、历史股价、相关新闻、公司基本面)与GPT-4o生成的分析配对,基于已知未来走势。移除提示中的真实股价后,利用该数据集对Llama3-8B进行微调,以预测每周股价变动。评估指标包括数值准确性和推理质量。
六、表现评估
评估模型性能的两个关键指标:股票预测的二分类准确率和推理质量的ROUGE分数。
比较三种方法:基线方法、提高股票价格粒度的HG方法、HG-NC方法。
股票走势预测中的二分类精度
评估模型预测股票价格方向的能力,使用二分类准确率指标,数据集包含380个观察值,涵盖20家公司。模型准确率从0.550提升至0.592,显示出持续改进的趋势。对时间因素的关注增加,“长期”关注度从15.0%升至69.8%,“短期”从7.5%升至56.6%。LLM有效区分短期与长期新闻影响,平衡两者在股票价格预测中的作用。通过新闻聚类结果,准确率进一步提升至63%,验证了增强LLM捕捉市场动态和新闻传播影响的假设。
ROUGE推理质量评价分数
由于数据集庞大,无法为每个实例获取真实情感分析,采用自动评估指标评估模型输出质量。使用ROUGE分数(ROUGE-1、ROUGE-2、ROUGE-L)评估推理质量,较高分数表示与参考文本的更好对齐和更广泛的内容覆盖。
HG-NC方法在所有指标上均优于基线和HG方法。分析输出中的预测与分析组件,强调模型在情感分析中权衡正负因素的能力。HG-NC方法更好地捕捉和阐述市场因素之间的复杂互动。
案例研究:波音公司
以波音公司为案例,比较HG方法和HG-NC方法的预测性能,HG-NC方法准确率为63.2%,HG方法为52.63%。通过高一致性聚类中文章的比例(平均相似度>0.6)评估聚类性能,发现聚类性能与预测性能之间存在强相关性。在HG-NC方法优于HG的7个案例中,高一致性聚类比例大多超过50%;当比例低于40%时,预测性能下降,表明市场信息捕捉不足。
七、总结
本文提出了一种增强LLM驱动的基于情感的股票价格预测方法。通过提高股票价格的粒度和提供短期/长期分析指令,增强了对新闻的上下文理解。评估新闻传播的聚类,并结合市场影响以改善预测。开发了指令调优数据集,以微调LLM,提高短期股票价格预测的准确性。
实验结果显示,方法实现了63%的二分类准确率,相较于55%的基线有显著提升,尤其在高聚类比(>50%)下表现更佳。研究强调了丰富的上下文数据和传播意识方法在提高预测准确性中的重要性。
八、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】