爱情中的决策树和贝叶斯

本文通过一个有趣的视角,探讨了如何使用决策树和贝叶斯算法来理解和量化爱情中的决策过程。作者以找男朋友为例,讨论了决策树在选择伴侣时可能的属性,并解释了贝叶斯定理如何帮助计算不同决策的概率。文章通过实例解释了贝叶斯定理在评估感情中的作用,展示了如何根据一系列事件更新某人成为理想伴侣的概率。最后,作者强调了感情需要经营,鼓励人们追求即使概率很小但值得的感情。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天看到一篇文章情人的加分扣分,请遵守贝氏定理,看完觉得写得真心不错,就和同事聊起来了,说现在找男朋友都可以画决策树了,于是我随意发了一张找男朋友的决策树给同事:男朋友决策树 
于是我说:“现在找女朋友真的很扎心啊,年龄大于30岁的话,机会都没有了。”,当然这是一句开玩笑的话,也并不代表我的择偶观,也不代表每一个人的择偶观,相信每一个人的心中都会有自己的一颗决策树,关于如何选择决策树分裂的属性我在前几篇博文中都有介绍过,主要就是ID3、C4.5和CART算法。言归正传,这时同事炸锅了,说这颗决策树的根节点不应该是年龄啊,应该是颜值啊、收入啊巴拉巴拉的,当然了,每个人心中的决策树都是不一样的,当然决策树都是很客观的东西很现实,感情中有很多东西都是决策树上体现不出来的东西,感性的东西是决策树能体现出来的吗?再说构建决策树也需要大量的数据,相信把所有婚恋网站的择偶数据全部搜集起来也构建不出符合每个人口味的爱情决策树吧。讲一讲我的择偶观吧,其实我的择偶观也很简单,用构建成决策树深度也是很浅的,我喜欢的女孩子大概就是三观相符,人品好,善良,其他的看感觉就行了,家境的话其实不是看对方家里有多少钱什么的,我觉得对家境这个词最正确的理解就应该是对方成长的家庭环境是否和谐幸福,对孩子三观上的引导是否正确,是否能培养出孩子独立健全的人格,这才是最重要的。 
除了决策树,我们甚至可以用贝叶斯算法来计算我们的爱情,首先我们来举一个很经典的栗子介绍一下朴素贝叶斯方法:有两个篮子A和B,A篮子有黑球和白球各20个,B篮子中有黑球30个和白球10个。现在我们从两个篮子中任意一个篮子抓出来了一个白球,请问这个白球来自A篮子的概率有多大?我们来看看如何解答这个问题呢: 
首先我们定义三个事件,A:从A篮子抓球;B:从B篮子抓球;C:抓的是白球。有了这三个事件,我们可以开始计算了,首先我们计算从A篮子抓取白球的概率,这个事件我们可以表示成P(AC): 

P(A∩C)=P(AC)=12⋅2040=14P(A∩C)=P(AC)=12⋅2040=14


因为球是有可能从A篮子或者B篮子抓取,所以前面要乘以一个1/2,同理可以计算出从B篮子抓取白球的概率P(BC): 

P(B∩C)=P(BC)=12⋅1040=18P(B∩C)=P(BC)=12⋅1040=18


那么抓取白球的概率P(C)为: 

P(C)=P(AC)+P(BC)=14+18=38P(C)=P(AC)+P(BC)=14+18=38


我们现在要计算的是在C事件发生的情况下求A事件的概率,学习过概率论的朋友都知道应该这么计算: 

P(A|C)=P(AC)P(C)=14/38=23P(A|C)=P(AC)P(C)=14/38=23

 

P(B|C)=P(BC)P(C)=18/38=13P(B|C)=P(BC)P(C)=18/38=13


所以说这颗白球来自于A篮子的概率要大于来自于B篮子的概率,所以如果白球是一个样本,A篮子和B篮子是两个类别,那么A样本我们可以分到A类中,这就是朴素贝叶斯用作分类的原理。 
同样,贝叶斯公式同样可以量化我们的感情。我们现在喜欢拿评分去评价一个小姐姐或者小哥哥,这个妹子几分?这个帅哥几分?身高太矮减分,人品好加分,衣品不好减分,抠门再减分,这才是我们平时习惯用到的情感量化系统。有了贝叶斯公式,我们可以量化出一套全新的情感量化系统。每个人都有自己择偶标准,如果有那么一个人全部满足了你的择偶要求,那么用概率论来说,他大概率是你的完美结婚对象,每个人的心中都有一个完美的情人。 
我们来举一个栗子吧,当你第一次见到一个男孩子,又高又帅,整得你小心脏砰砰砰,心动了,这大概就是你觉得遇到了对的人,好我们保守一点,不要搞得这么轻浮,假装一下,恩,这个妹子遇到对的人的概率大概是4成吧,这位男孩是对的人的先验概率是0.4。于是这个妹子撩了一波这个小哥哥,跟小哥哥约会,第一次约会,一起吃了顿饭,吃完饭小哥哥要送妹子回家,小姐姐顿时心花怒放欣喜若狂,但是要保持矜持,不能让小哥哥看出来。当然了,送妹子回家,谁知道小哥哥是不是装的绅士呢,好吧,我们这里把事件A定义成:小哥哥是理想的男朋友,事件B定义成:绅士地送小姐姐回家。那么P(B|A)表示小哥哥是理想男友情况下送小姐姐回家的概率,暂且我们相信爱情,主观地认为P(B|A)=0.8,还有一种情况就是小哥哥是装的绅士,那么这里有个概率P(B|Ac),这里的Ac表示与A事件对立的事件,整体的P(B|Ac)表示小哥哥不是小姐姐理想男友情况下送小姐姐回家的概率,我们暂且认为这个概率P(B|Ac)=0.5。这时候我们可以根据这个事件和贝叶斯公式来更新我们的先验概率了: 

P(A|B)=P(B|A)P(A)P(B|A)P(A)+P(B|Ac)P(Ac)=0.8×0.40.8×0.4+0.5×(1−0.4)=0.52P(A|B)=P(B|A)P(A)P(B|A)P(A)+P(B|Ac)P(Ac)=0.8×0.40.8×0.4+0.5×(1−0.4)=0.52


好了,现在我们计算出了在小哥哥主动送小姐姐回家的情况下是小姐姐理想男友的概率是0.52了,从最开始的先验概率0.4到现在0.52,就因为小哥哥绅士地送小姐姐回家,小哥哥成为理想男友的概率就上升到12个百分点。就这样一点一滴地积累,每一次算出来的概率就成为了下一个事件的先验概率,小哥哥是理想男友的概率达到了0.8,这是感情经营的结果。但是有一天,小姐姐发现了小哥哥和前女友的暧昧信息,瞬间就崩溃了,先别急,我们来看看小哥哥是理想男友的概率是多少,首先我们将C事件定义为:和前女友搞暧昧。我们看看P(C|A),这个就表示小哥哥是理想男友的情况下和前女友搞暧昧,听起来很狗血,当然这概率很低很低,哪个妹子会认为自己男友跟前女友搞暧昧还认为男朋友完美的,暂且认为这个概率为P(C|A)=0.02,就当是100个人中有这么2个奇葩吧。还有一个概率P(C|Ac)表示不是自己理想男友的人和前女友搞暧昧,行,其实和前女友搞暧昧的人也不在少数,暂且就认为这个P(C|Ac)=0.3吧,这C事件发生之后,我们来更新一下小哥哥是理想男友的概率吧,虽然现在我们的P(A)=0.8,但是还是经不起你作啊: 

P(A|C)=P(C|A)P(A)P(C|A)P(A)+P(C|Ac)P(Ac)=0.02×0.80.02×0.8+0.3×(1−0.8)=0.21P(A|C)=P(C|A)P(A)P(C|A)P(A)+P(C|Ac)P(Ac)=0.02×0.80.02×0.8+0.3×(1−0.8)=0.21


你看现在从0.8直接降到了0.21,还不如最初的0.4呢,所以划重点了啊,有女朋友的千万别和前女友搞暧昧,要好好爱护自己的女票,感情需要经营的,只有通过一点一滴地小事情,你的P(A)才会不断上升,你一作,P(A)直接跳水。当然了,这个只是举了一个小小的有趣的栗子,来让朋友们更好地理解决策树和贝叶斯,希望能对大家的理解有所帮助,本人能力有限,文中如有纰漏,希望朋友们不吝指教,如有转载,也请您标明出处,谢谢。 
当然了,我们依然要相信爱情,情人的加分扣分,请遵守贝氏定理 这篇文章有句话就说得很好:毕竟真正完美的感情,就算只有那么1%的几率,也值得一个人费尽一切去追求。 
两情若是久长时,又岂在朝朝暮暮;最后祝愿广大朋友们有情人终成眷属。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值