[每日一题]115:旋转图像 —— 旋转矩阵


题目描述

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1:

在这里插入图片描述

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]

示例 2:

在这里插入图片描述

输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

示例 3:

输入:matrix = [[1]]
输出:[[1]]

示例 4:

输入:matrix = [[1,2],[3,4]]
输出:[[3,1],[4,2]]

题解思路

首先想到,纯模拟,从外到内一圈一圈的转,但这个方法太慢。
如下图,首先沿着副对角线翻转一次,然后沿着水平中线翻转一次。

在这里插入图片描述

或者,首先沿着水平中线翻转一次,然后沿着主对角线翻转一次

方法一:使用辅助数组

复杂度分析

  • 时间复杂度: O ( N 2 ) O(N^2) O(N2),其中 N 是 matrix 的边长。
  • 空间复杂度: O ( N 2 ) O(N^2) O(N2)。我们需要使用一个和 matrix 大小相同的辅助数组。

代码实现:

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        const int sz = matrix.size();
        vector<vector<int>> vv(sz, vector<int>(sz, 0));
        
        for (int i = 0; i < sz; ++i) {
            for (int j = 0; j < sz; ++j) {
                vv[j][sz - 1 - i] = matrix[i][j];
            }
        }
        matrix = vv;
    }
};
方法二:原地旋转

我们应该枚举哪些位置 (row,col) 进行原地交换操作呢?由于每一次原地交换四个位置,因此:

当 n 为偶数时,我们需要枚举 n 2 / 4 = ( n / 2 ) n^2 / 4 = (n/2) n2/4=(n/2) 个位置,可以将该图形分为四块,以 4×4 的矩阵为例:

在这里插入图片描述

保证了不重复、不遗漏;

当 n 为奇数时,由于中心的位置经过旋转后位置不变,我们需要枚举 ( n 2 − 1 ) / 4 = ( ( n − 1 ) / 2 ) (n^2-1) / 4 = ((n-1)/2) (n21)/4=((n1)/2) 个位置,需要换一种划分的方式,以 5×5 的矩阵为例:

在这里插入图片描述

同样保证了不重复、不遗漏,矩阵正中央的点无需旋转。

复杂度分析:

  • 时间复杂度: O ( N 2 ) O(N^2) O(N2),其中 N 是 matrix 的边长。
  • 空间复杂度: O ( 1 ) O(1) O(1)。为原地旋转。

代码实现:

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();

        for (int i = 0; i < n / 2; ++i) {
            for (int j = 0; j < (n + 1) / 2; ++j){
                int tmp = matrix[i][j];
                // 逆时针
                //matrix[i][j] = matrix[j][n - 1 - i];
                //matrix[j][n - 1 - i] = matrix[n - 1 - i][n - 1 - j];
                //matrix[n - 1 - i][n - 1 - j] = matrix[n - 1 - j][i];
                //matrix[n - 1 - j][i] = tmp;
                
                // 顺时针
                matrix[i][j] = matrix[n - 1 - j][i];
                matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
                matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
                matrix[j][n - 1 - i] = tmp;
            }
        }
    }
};
方法三:翻转代替旋转

复杂度分析

  • 时间复杂度: O ( N 2 ) O(N^2) O(N2),其中 N 是 matrix 的边长。对于每一次翻转操作,我们都需要枚举矩阵中一半的元素。
  • 空间复杂度: O ( 1 ) O(1) O(1)。为原地翻转得到的原地旋转。

代码实现:

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        const int n = matrix.size();

        for (int i = 0; i < n; ++i) {   // 沿着副对角线反转
            for (int j = 0; j < n - i; ++j) {
                swap(matrix[i][j], matrix[n - 1 - j][n - 1 - i]);
            }
        }
        for (int i = 0; i < n / 2; ++i) {   // 沿着水平中线反转
            for (int j = 0; j < n; ++j) {
                swap(matrix[i][j], matrix[n - 1 - i][j]);
            }
        }
    }
};

代码实现:

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        const int n = matrix.size();

        for (int i = 0; i < n / 2; ++i) {   // 沿着水平中线反转
            for (int j = 0; j < n; ++j) {
                swap(matrix[i][j], matrix[n - 1 - i][j]);
            }
        }
        for (int i = 0; i < n; ++i) {   // 沿着主对角线反转
            for (int j = i + 1; j < n; ++j) {
                swap(matrix[i][j], matrix[j][i]);
            }
        }
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值