顶刊必备的图,原来这么简单!t-SNE降维,特征可视化,可解释性,深度学习故障识别,回归预测的必备工具!2个应用示例,直接运行!

适用平台:Matlab2021及以上

你肯定见过这些顶级期刊在做论文中的特征可视化工具:t-SNE;出来的图都非常好看,能够给专家及读者留下非常好的印象,这是科研的必备工具!尽快拿下!

t-SNE的作用:当我们处理高维数据时,很难直观地理解数据之间的关系。t-SNE的目标是帮助我们在一个更低维度的空间中(通常是2D或3D)对数据进行可视化,同时保留数据点之间的相似性关系。通过一些数学变换,将原始信息从复杂的高维度(比如100维)变成一个简单的低维度(比如2维或3维)的样本分布图。

计算步骤:

  • t-SNE的核心思想是保持高维空间中数据点之间的相似性关系,尽量在低维空间中保持相似的关系。简单说,如果在高维空间中两个点很相似,它们在降维后的低维空间中仍然要尽量保持相似。

  • 这个算法的数学原理涉及到概率分布和距离的概念。它首先计算高维空间中点与点之间的相似性,使用一个概率分布来表示这种相似性。然后,在低维空间中,它再计算点与点之间的相似性,并构建另一个概率分布。

  • t-SNE的目标是最小化这两个概率分布之间的差异,以确保高维空间中相似的点在低维空间中仍然保持相似。这个差异通常通过使用KL散度(Kullback-Leibler divergence)来衡量。

简而言之,t-SNE让我们在一个更容易理解的低维空间中看到数据点,同时尽量保持原始数据点之间的相似性关系。这使得我们可以更好地理解数据的结构和模式,特别是在局部区域内的关系。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值