使用KNN/SVM进行未知飞行器预测GUI/Qt小白教程

文章介绍了使用KNN和SVM算法进行飞机类型预测的流程,包括数据预处理、模型训练和交叉验证。通过图形用户界面GUI实现用户交互,用户输入飞机参数,系统利用KNN或SVM进行分类预测。开发中使用了PyQt5库来设计GUI,并提到数据集来源于plane_data.xls和test_data.xls文件。
KNN 的全称是 K Nearest Neighbors,意思是 K 个最近的邻居

       KNN算法具体步骤:

(1)计算已知类别数据集中的点与当前点之间的距离;

(2)按照距离递增次序排序;

(3)选取与当前点距离最小的K个点;

(4)确定前K个点所在类别的出现频率;

(5)返回前K个点出现频率最高的类别作为当前点的预测分类。

       在训练分类器时使用交叉验证,其基本思想是将原始数据进行分组,一部分作为训练集,另一部分作为验证集,首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型,以此来作为评价分类器的性能指标。

       常做K折交叉验证,将数据集分成K份,轮流将其中K-1份做训练,1份做验证,多次的结果的均值作为对算法精度的估计,以求更精确一点。

       距离度量是指算法使用样本间的距离作为样本之间的相似性指标,常用欧氏距离或曼哈顿距离。

       需要用到的第三方库有:pandas、sklearn

       具体实现的步骤有:数据加载、数据预处理(删除重复数据、错误数据、填补空缺值、数据分割、标准化处理)、模型训练(构建模型、模型训练、参数调优)

       在编写代码过程中需要注意的是在读入需要预测的数据之后,也要将其与之前的训练数据一样的标准化。

       可以看一下别人用KNN是怎么做的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安五军

请作者喝一杯咖啡吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值