A phase-type distribution is a probability distribution constructed by a convolution or mixture of exponential distributions. It results from a system of one or more inter-related Poisson processes occurring in sequence, or phases. The sequence in which each of the phases occur may itself be a stochastic process. The distribution can be represented by a random variable describing the time until absorption of a Markov process with one absorbing state. Each of the states of the Markov process represents one of the phases.
It has a discrete-time equivalent – the discrete phase-type distribution.
The set of phase-type distributions is dense in the field of all positive-valued distributions, that is, it can be used to approximate any positive-valued distribution.
1. Definition
2. Characterization
3. Special cases
The following probability distributions are all considered special cases of a continuous phase-type distribution:
- Degenerate distribution, point mass at zero or the empty phase-type distribution – 0 phases.
- Exponential distribution – 1 phase.
- Erlang distribution – 2 or more identical phases in sequence.
- Deterministic distribution (or constant) – The limiting case of an - Erlang distribution, as the number of phases become infinite, while the time in each state becomes zero.
- Coxian distribution – 2 or more (not necessarily identical) phases in sequence, with a probability of transitioning to the terminating/absorbing state after each phase.
- Hyperexponential distribution (also called a mixture of exponential) – 2 or more non-identical phases, that each have a probability of occurring in a mutually exclusive, or parallel, manner. (Note: The exponential distribution is the degenerate situation when all the parallel phases are identical.)
- Hypoexponential distribution – 2 or more phases in sequence, can be non-identical or a mixture of identical and non-identical phases, generalises the Erlang.
As the phase-type distribution is dense in the field of all positive-valued distributions, we can represent any positive valued distribution. However, the phase-type is a light-tailed or platykurtic distribution. So the representation of heavy-tailed or leptokurtic distribution by phase type is an approximation, even if the precision of the approximation can be as good as we want.
https://en.wikipedia.org/wiki/Phase-type_distribution