Matlab RGB 颜色对照表(0-1之间取值)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
https://blog.csdn.net/qq_38882446/article/details/100886087

### Huffman 编码在图像编码中的应用 #### 技术细节 Huffman 编码作为一种高效的无损数据压缩技术,在图像处理领域得到了广泛应用。该方法依据字符出现的概率大小为其分配不同长度的编码,从而减少冗余并提升存储效率[^3]。 对于图像文件而言,像素值分布往往具有一定的规律性和局部相似性,这使得某些灰度级或颜色组合频繁出现,而另一些则较少见。利用这一特性,可以通过构建最优前缀树即霍夫曼树来为各可能取值指定相应位串示形式: - **频率统计**:遍历整幅图计算各个亮度等级(对于彩色图片则是RGB分量)的发生次数; - **节点创建与排序**:按照上述所得频数建立叶子结点,并按升序排列形成初始队列; - **二叉树构造**:不断取出两个权值最小者作为新内部节点的孩子直至只剩下一个根节点为止; - **路径标记**:从上至下给每条边赋予0/1标签完成最终字典制作; 此过程确保高频次项目对应更短序列,低频反之,进而达到节省空间的目的[^1]。 #### 实现方法 具体到JPEG标准里,经过离散余弦变换(DCT)后的量化系数会被重新组织成Zigzag顺序的一维数组再送入熵编码器进行下一步操作。此时采用的就是变长编码方案之一——DC直流部分通常采取差分级数预测法后再做定长映射,AC交流成分则直接运用前述经典模式生成独一无二且平均比特率更低的结果集[^4]。 以下是简化版MATLAB代码片段展示如何针对简单二维矩阵实施基本型别的转换逻辑[^2]: ```matlab function huffCode = generateHuffmanCodes(symbolProbabilities) % 构建霍夫曼树... end % 假设已知某张黑白照片中各强度级别的占比情况如下所示: probDist = [0.1, 0.15, 0.3, ...]; % 调用函数获得最佳匹配关系列 huffTable = generateHuffmanCodes(probDist); disp('霍夫曼编码对照:'); disp(huffTable); ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值