epoch iter以及batchsize的关系

本文详细介绍了深度学习中的核心概念——epoch和batch。一个epoch是指数据集完整地通过神经网络一次,而batch则是将数据集分块处理。例如,若一个数据集有2000个样本,分为500个样本的batch,则完成一个epoch需要4个iteration。理解这些概念对于优化训练过程至关重要。
摘要由CSDN通过智能技术生成

(1)当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个 epoch。
(2)在不能将数据一次性通过神经网络的时候,就需要将数据集分成几个 batch。
(3)在一个 epoch 中,batch 数和迭代数是相等的

例如:比如对于一个有 2000 个训练样本的数据集。将 2000 个样本分成大小为 500 的 batch,那么完成一个 epoch 需要 4 个 iteration。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值